FICHE D'EXERCICES (SUITES NUMERIQUES)

EXERCICE 1

Pour tout entier naturel n, on a : $\ln(10^n v_n) = \frac{n}{2}$.

- 1- a) Démontrer que (v_n) est une suite géométrique dont on déterminera la raison et les termes v_0, v_1 .
 - b) La suite (v_n) est elle convergente?
- 2- P est la suite définie par $P_0 = v_0$ et pour tout entier naturel $n \ge 1$ par $P_n = v_n P_{n-1}$.
 - a) Calculer P_1 , P_2 .
 - b) Démontrer que, pour tout $n \ge 1$ on a : $P_n = \left(\frac{\sqrt{e}}{10}\right)^{\frac{n(n+1)}{2}}$.
 - c) Déterminer l'ensemble des entiers naturels n tels que $P_n \le 10^{-8}$.

EXERCICE 2

v est la suite définie par $v_0 = 3$ et pour tout entier naturel n, $v_{n+1} = \frac{1}{3}v_n + \frac{4}{3}$.

- 1- u est la suite définie pour tout entier naturel n par : $u_n = v_n 2$
 - a) Démontrer que u est une suite géométrique dont on précisera la raison.
 - b) Exprimer u_n , puis v_n explicitement en fonction de n.
- 2- Exprimer $S_n = u_0 + u_1 + \dots + u_n$ en fonction de n.
- 3- Déduire $S'_n = v_0 + v_1 + \dots + v_n$ en fonction de n.
- 4- Exprimer en fonction de n le produit $\pi_n = u_0 \times u_1 \times ... \times u_n$.

EXERCICE 3

On considère la suite (u_n) définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 2}$.

- 1- Démontrer par récurrence que : $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.
- 2- Démontrer que la suite (u_n) est croissante.

EXERCICE 4

Soit f la fonction définie sur] – 2; + ∞ [par $f(x) = \frac{2x+1}{x+2}$.

- 1- Démontrer que : $\forall x \in [0;1], f(x) \in [0;1].$
- 2- Soit (u_n) la suite définie par : $u_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - a) Démontrer par récurrence que : $\forall n \in \mathbb{N}, 0 \le u_n \le 1$.
 - b) Démontrer que la suite (u_n) est croissante.
 - c) Démontrer que la suite (u_n) est convergente et calculer sa limite.

EXERCICE 5

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n - 2}{u_n + 1} \end{cases}$

- 1- Démontrer par récurrence que : $\forall n \in \mathbb{N}, u_n > 2$.
- 2- Démontrer que la suite (u_n) est décroissante.
- 3- Démontrer que la suite (u_n) est convergente et calculer sa limite.