FONCTION EXPONENTIELLE ET FONCTIONS PUISSANCES

OBJECTIFS:

- Définir et étudier les fonctions exponentielles et puissances ;
- Mettre en place les primitives des fonctions de la forme $u'e^u$ et $u'u^\alpha$.

1- FONCTION EXPONENTIELLE

1.1- DEFINITION ET PROPRIETES

1.1.1 Définition

On appelle fonction exponentielle népérienne, la bijection réciproque de la fonction logarithme népérien. On la note **exp.**

$$\exp: \mathbb{R} \to]0; + \infty[$$

$$x \mapsto \exp(x)$$

On admet que $\forall x \in \mathbb{R}$, $\exp(x) = e^x$.

1.1.2 Conséquences

- La fonction exp est définie et dérivable sur \mathbb{R} .
- Pour tout nombre réel x, $\exp(x) > 0$.
- Pour tout nombre réel x et tout nombre réel strictement positif y, on a : $\exp(x) = y \iff x = lny$.
- exp(0) = 1 et exp(1) = e
- Pour tout nombre réel x, $\ln(e^x) = x$;
- Pour tout nombre réel x strictement positif, $\exp(\ln x) = x$.

Exemple

Résoudre dans \mathbb{R} les équations suivantes : a) $e^x = 5$; b) $e^x = -1$.

Solution

- a) $e^x = 5 \iff x = \ln(5)$. Donc l'ensemble des solutions est : $\{\ln(5)\}$.
- b) $e^x = -1$ n'admet pas de solution car $e^x > 0$ et -5 < 0.

La fonction exponentielle népérienne étant la bijection réciproque de la fonction Logarithme népérien, elle est donc strictement croissante sur \mathbb{R} . On en déduit :

Propriétés

Pour tous nombres réels x et y, on a :

$$e^x = e^y \Leftrightarrow x = y$$

$$e^x < e^y \Leftrightarrow x < y$$

$$e^x > e^y \Leftrightarrow x > y$$

Ces propriétés sont également vérifiées pour les inégalités : \geq et \leq .

Exemple

Résoudre dans \mathbb{R} les inéquations suivantes : a) $e^x > 3$; b) $e^{x^2} \le e^{x+6}$.

Solution

a)
$$e^x > 3 \Leftrightarrow e^x > e^{\ln(3)}$$

 $\Leftrightarrow x > \ln(3)$

Donc l'ensemble des solutions est : $]\ln(3)$; $+\infty[$.

b)
$$e^{x^2} \le e^{x+6} \Leftrightarrow x^2 \le x+6$$

 $\Leftrightarrow x^2 - x - 6 \le 0$

On calcule le discriminant de $x^2 - x - 6$

$$\Delta = 25$$

 $\Delta > 0$, le polynôme admet deux racines distinctes :

$$x_1 = \frac{-(-1)-5}{2}$$
 , $x_2 = \frac{-(-1)+5}{2}$
 $x_1 = -2$, $x_2 = 3$

Tableau de signe de $x^2 - x - 6$

x	$-\infty$	-2	3		+∞
$x^2 - x - 6$	+	0	- 0	+	

Donc l'ensemble des solutions de l'inéquation est : [-2; 3].

EXERCICE

Résoudre dans \mathbb{R} l'équation et les inéquations suivantes :

$$a/e^{\frac{2x+1}{x-2}} < 1$$
; $b/e^{x^2-3x+1} \le e$; $c)e^{\frac{2x+1}{x-2}} = e^{x+4}$.

1.1.3 Propriétés algébriques

a) Propriété fondamentale

Pour tous nombres réels x et y, on a :

$$e^{x+y}=e^xe^y.$$

b) Conséquences

Pour tous nombres réels x et y, on a :

$$\bullet \quad e^{-x} = \frac{1}{e^x};$$

$$\bullet \quad e^{x-y} = \frac{e^x}{e^y};$$

• Pour tout nombre rationnel r, $(e^x)^r = e^{rx}$.

Exemples

Simplifier les écritures suivantes :

a/
$$e^{5+ln2}$$
; b/ $e^{10} \times (e^{-4})^3$; c/ $\frac{e^{1+ln2}}{e^{2+ln3}}$.

Solution

a/
$$e^{5 + ln2} = e^5 \times e^{ln2}$$
; b/ $e^{10} \times (e^{-4})^3 = e^{10} \times e^{-12}$; c/ $\frac{e^{1 + ln2}}{e^{2 + ln3}} = e^{1 + ln2 - 2 - ln3}$
= $2 \times e^5$ = e^{-2} = $e^{-1 + ln\frac{2}{3}}$.

1.2- ETUDE DE LA FONCTION EXPONENTIELLE

1.2.1- Limites aux bornes de l'ensemble de définition

Propriétés:

$$(1)\lim_{x\to +\infty}e^x=+\infty;$$

$$(2) \lim_{x \to -\infty} e^x = 0;$$

$$(3) \lim_{x \to +\infty} \frac{e^x}{x} = +\infty;$$

$$(4)\lim_{x\to-\infty}xe^x=0.$$

Exemple:

Calculer les limites suivantes.

$$a/\lim_{x\to +\infty} \frac{3e^x-2}{5e^x+3}$$
; $b/\lim_{x\to +\infty} (x-e^x)$; $c/\lim_{x\to +\infty} \frac{\ln x}{e^x}$;

$$d/\lim_{x\to-\infty}(x-e^x)$$

Solution

a/ Posons:
$$X = e^x$$
. On a: $\lim_{x \to +\infty} \frac{3e^x - 2}{5e^x + 3} = \lim_{x \to +\infty} \frac{3x - 2}{5x + 3} = \frac{3}{5}$.

b/
$$\lim_{x \to +\infty} (x - e^x) = \lim_{x \to +\infty} x \left(1 - \frac{e^x}{x}\right) = +\infty \operatorname{car} \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

c/
$$\lim_{x \to +\infty} \frac{\ln x}{e^x} = \lim_{x \to +\infty} \frac{\ln x}{x} \times \frac{x}{e^x} = 0$$
 car $\lim_{x \to +\infty} \frac{x}{e^x} = 0$ et $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

$$d/\lim_{x \to -\infty} (x - e^x) = -\infty \operatorname{car} \lim_{x \to -\infty} e^x = 0.$$

EXERCICE

Calculer les limites de f aux bornes de son ensemble de définition :

$$a/f(x) = \frac{e^x - 1}{2x}$$
; $b/f(x) = e^{2x} - e^x + 1$; $c/f(x) = 2xe^{-x}$;

$$d/f(x) = 2x + e^{-x}$$
; $e/f(x) = \frac{e^x - 1}{2e^x + 1}$; $f/f(x) = \frac{e^x}{lnx}$.

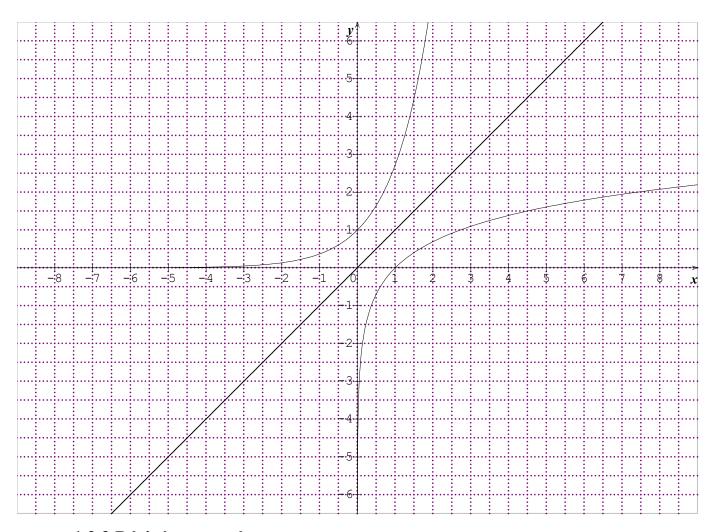
1.2.2- Courbe représentative

Le repère (O, I, J) est orthonormé

On désigne respectivement par (C) et (C') les courbes représentatives des fonctions Exponentielle et logarithme népérien, par (Δ) la droite d'équation : y = x.

(C) se déduit de (C') par la symétrie orthogonale d'axe (Δ). (C) est la courbe au

dessus de la droite et (C') la courbe en dessous de la droite.



1.2.3 Dérivée et conséquences

Propriété 1

La fonction exponentielle est dérivable sur $\mathbb R$ et pour tout nombre réel x,

On a:
$$(exp)'(x) = expx$$
.

La fonction $x \mapsto e^x$ est dérivable en 0 et son nombre dérivé est 1.

On en déduit la propriété suivante.

Propriété 2

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

1.3- RESOLUTION D'EQUATIONS ET D'INEQUATIONS METHODE

• Equation du type $ae^{2x} + be^x + c = 0$

On remarque que $e^{2x} = (e^x)^2$; l'équation s'écrit donc $a(e^x)^2 + be^x + c = 0$.

Pour la résoudre, on pose $X = e^x$ et on résout le système

$$\begin{cases} aX^2 + bX + c = 0 \\ X = e^x \end{cases}$$

(sans oublier que X doit être strictement positif).

Exemple 1

Résoudre dans \mathbb{R} l'équation (E) : $e^{2x} - e^x - 6 = 0$.

Solution

Résoudre cette équation revient à résoudre le système :

$$\begin{cases} X^2 - X - 6 = 0 \\ X = e^x \end{cases}$$

 $\begin{cases} X^2 - X - 6 = 0 \\ X = e^x \end{cases}$ L'équation $X^2 - X - 6 = 0$ a deux solutions $X_1 = -2$ et $X_2 = 3$. Nous devons résoudre alors les équations :

- $e^x = -2$: elle n'a pas de solution car -2 < 0.
- $e^x = 3$: elle a pour seule solution x = ln3.

Donc l'ensemble des solutions de l'équation (E) est $\{ln3\}$.

Exemple 2

Résoudre dans \mathbb{R} l'inéquation (I) : $2e^{2x} - 5e^x + 2 \ge 0$.

Solution

Posons $X = e^x$, on a $2X^2 - 5X + 2 > 0$.

$$\Delta = 9$$

 $\Delta > 0$ alors le polynôme $2X^2 - 5X + 2$ admet deux racines distinctes

$$X_1 = \frac{-(-5) - 3}{2 \times 2} = \frac{1}{2} \text{ et } X_2 = \frac{-(-5) + 3}{2 \times 2} = 2$$

$$2X^2 - 5X + 2(2X - 1)(X - 2)$$
 et donc $2e^{2x} - 5e^x + 2 = (2e^x - 1)(e^x - 2)$.

On a
$$2e^x - 1 = 0 \iff x = \ln(\frac{1}{2})$$

$$e^x - 2 = 0 \iff x = ln2$$

Tableau de signe de $2e^{2x} - 5e^x + 2$

x	-∞	$ln\frac{1}{2}$		ln2		+∞
$2e^{2x} - 5e^x + 2$	+	0	-	0	+	

L'ensemble solution de l'inéquation (I) est :]- ∞ ; $ln\frac{1}{2}$] \cup [ln2; + ∞ [.

EXERCICE

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

A.

a/
$$e^{3x} = 4e^x$$
. b/ $2e^{2x} + 3e^x = 9$. c/ $-13e^x + 2e^{-x} - 11 = 0$.
d/Soit $P(x) = 2x^3 - 3x^2 + x$.

- 1- Factoriser P(x) en produit de facteurs de premier degré.
- 2- Soit l'équation (E) : $2e^{3x} 3e^{2x} + e^x = 0$

Déduire de la question 1- la résolution de l'équation (E).

- B. P est le polynôme défini par : $P(x) = x^3 9x^2 x + 9$.
 - 1- Calculer P(9).

Déduire une factorisation de P(x).

- 2- Résoudre l'équation P(x) = 0.
- 3- Résoudre l'équation $\frac{e^{2x} + 9e^{-x}}{9e^x + 1} = 1.$

C.

$$a/e^{x+1} - 1 > 0.$$
 $b/(e^x)^{x+1} \ge e^{12}.$ $c/2e^{2x} - 3e^x + 1 > 0.$ $d/e^{2x^2 - 3x - 5} \le (e^2)^2.$ $e/\frac{2e^x - 1}{e^x - 2} < \frac{e^x}{e^x + 1}.$

D. Résoudre dans $\mathbb{R} \times \mathbb{R}$ les systèmes.

a/
$$\begin{cases} 2e^{x} + e^{y} = 0 \\ 4e^{x} - e^{y} = 3. \end{cases}$$
 b/ $\begin{cases} e^{x+y} = \frac{10}{3} \\ e^{x} + e^{y} = \frac{17}{3}. \end{cases}$ c/ $\begin{cases} xy = 14 \\ e^{x} \times e^{y} = e^{-9}. \end{cases}$

1.4- FONCTIONS COMPORTANT **exp**

1.4.1- Dérivée et conséquence

Propriété

Soit u une fonction dérivable sur un intervalle K.

La fonction $\exp 0u$ (ou e^u) est dérivable sur K et on a : $(e^u)' = u'e^u$.

Exemple:

• La fonction $x \mapsto e^{-x^2 + x}$ est dérivable sur \mathbb{R} .

On a
$$\forall x \in \mathbb{R}$$
, $(e^{-x^2 + x})' = (-x^2 + x)^x$, $e^{-x^2 + x}$.

• La fonction $x \mapsto e^{\ln x + x - 1}$ est dérivable sur $]0; +\infty[$.

On a
$$\forall x \in \mathbb{R}$$
, $(e^{\ln x + x - 1})' = (\ln x + x - 1)' e^{\ln x + x - 1}$
$$= \left(\frac{1}{x} + 1\right) e^{\ln x + x - 1}.$$

EXERCICE:

Calculer la fonction dérivée de chaque fonction proposée.

$$a/f(x) = e^{-x^2}$$
; $b/f(x) = xe^{-x}$; $c/f(x) = e^{\frac{1}{x^2+1}}$; $d/f(x) = x^2e^{-x}$.

1.4.2- Primitives de $u'e^u$

Propriété

Soit u une fonction dérivable sur un intervalle K.

La fonction $u'e^u$ admet pour primitive sur K la fonction e^u .

Exemple

Une primitive sur \mathbb{R} de la fonction $x \mapsto xe^{-x^2}$ est la fonction $x \mapsto -\frac{1}{2}e^{-x^2}$.

Une primitive sur] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [de la fonction $x \mapsto \frac{e^{tanx}}{cos^2x}$ est la

function $x \mapsto e^{tanx}$.

EXERCICE:

Déterminer une primitive de f sur l'intervalle I proposé.

$$a/f(x) = e^{3x-5}$$
 $I = \mathbb{R}$; $b/f(x) = e^{4-2x}$ $I = \mathbb{R}$.

$$c/f(x) = \frac{1}{x^2}e^{\frac{1}{x}}$$
 $I =]0; +\infty[; d/f(x) = \frac{e^x}{1+e^x}$ $I = \mathbb{R}.$

2-FONCTIONS PUISSANCES

2.1- DEFINITION

Soit a un nombre réel.

On appelle fonction puissance d'exposant a, la fonction f_a définie sur $]0; +\infty[$ par $f_a(x) = x^a$.

Pour tout nombre réel x strictement positif, $e^{alnx} = x^a$

Exemple

La fonction $x \mapsto x^{\frac{1}{3}}$ est la fonction puissance d'exposant $\frac{1}{3}$.

2.2- ETUDES DES FONCTIONS PUISSANCES

2.2.1- Etude de la fonction $f_a: x \mapsto x^a$

 (Γ_a) désigne la courbe représentative de la fonction f_a .

• Ensemble de définition

On a :
$$D_{f_a} =]0; +\infty[$$

• Dérivée et sens de variation

On a : $\forall x \in]0; +\infty[$, $x^a = e^{alnx};$ donc, la fonction f_a est dérivable sur son ensemble de définition et sa dérivée est la fonction f_a' définie par :

$$f'_a(x) = ax^{a-1} = \frac{a}{x}e^{alnx}.$$

 f_{a} ' est du signe de a; on distingue deux cas : a < 0 et a > 0.

1er cas : a < 0

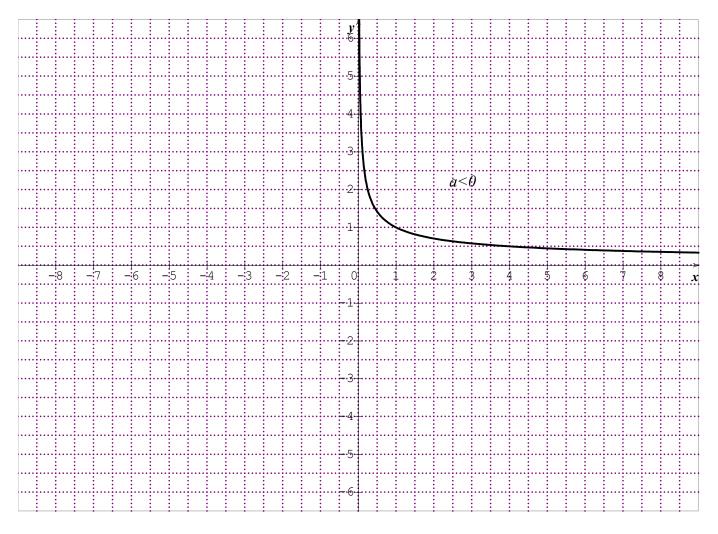
On a : $\forall x \in]0; +\infty[, f_a'(x) < 0; donc, f_a \text{ est décroissante sur }]0; +\infty[.$

On a : $\lim_{\substack{x \to 0 \\ >}} alnx = +\infty$; donc $\lim_{\substack{x \to 0 \\ >}} e^{alnx} = +\infty$. La droite (OJ) est

asymptote à (Γ_a) .

On a : $\lim_{x \to +\infty} a \ln x = -\infty$; donc : $\lim_{x \to +\infty} e^{a \ln x} = 0$. La droite (OI) est asymptote à (Γ_a) en $+\infty$.

Courbe représentative



 2^{e} cas : a > 0

On a : $\forall x \in]0; +\infty[, f'_a(x) > 0; donc, f_a \text{ est croissante sur }]0; +\infty[.$

On a : $\lim_{\substack{x \to 0 \\ >}} a \ln x = -\infty$; donc $\lim_{\substack{x \to 0 \\ >}} e^{a \ln x} = 0$.

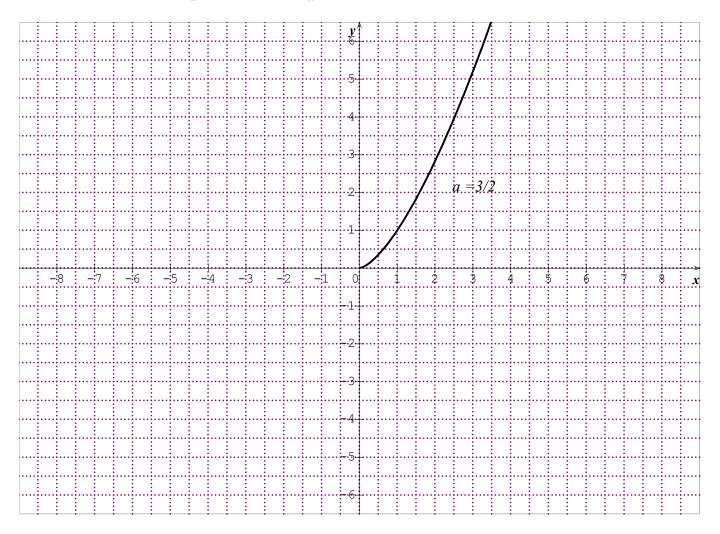
On a:
$$\lim_{x \to +\infty} a \ln x = +\infty$$
; donc $\lim_{x \to +\infty} e^{a \ln x} = +\infty$.

De plus:
$$\lim_{x \to +\infty} \frac{x^a}{x} = \lim_{x \to +\infty} e^{(a-1)lnx}$$
.

Donc, (Γ_a) admet en $+\infty$ une branche parabolique :

- de direction celle de (OI), si 0 < a < 1;
- de direction celle de (OJ), si a > 1.

Courbe représentative (Γ_a) .



2.2.2 Fonction $u^{\alpha} (\alpha \in \mathbb{R})$

Propriété 1

Soit lpha un nombre réel et u une fonction dérivable et strictement positive sur un intervalle K. La fonction u^lpha est dérivable sur K et

on a:
$$(u^{\alpha})' = \alpha u' u^{\alpha-1}$$
.

Exemple

La fonction $x \mapsto (sinx)^{\pi}$ est dérivable sur \mathbb{R} et sa dérivée est la fonction $x \mapsto \pi cosx(sinx)^{\pi-1}$.

Propriété 2

Soit α un nombre réel différent de -1, u une fonction dérivable et strictement positive sur un intervalle K. La fonction $u'u^{\alpha}$ admet pour primitive sur K la fonction $\frac{u^{\alpha+1}}{\alpha+1}$.

Exemple

La fonction $x \mapsto 2x(1-x^2)^{\sqrt{2}}$ admet pour primitive sur] – 1; 1[la fonction $\mapsto -\frac{(1-x^2)^{\sqrt{2}+1}}{\sqrt{2}+1}$.

2.3- CROISSANCE COMPAREE de lnx, e^x , x^α

Propriétés

Soit α un nombre réel strictement positif. On a :

(1)
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0$$
; (2) $\lim_{x \to 0} x^{\alpha} \ln x = 0$; (3) $\lim_{x \to +\infty} \frac{e^{x}}{x^{\alpha}} = +\infty$;

$$(4)\lim_{x\to+\infty}x^{\alpha}e^{x}=0.$$

Exemples

Calculer les limites suivantes :

a/
$$\lim_{x \to +\infty} \frac{\ln x}{\frac{1}{x^3}}$$
; b/ $\lim_{x \to +\infty} \frac{e^{\frac{x}{2}\ln x}}{x^3}$; c/ $\lim_{x \to +\infty} x^2 - 2\ln x$; d/ $\lim_{x \to +\infty} x^3 - e^x$.

Solution

$$a/\lim_{x \to +\infty} \frac{\ln x}{x^{\frac{1}{3}}} = 0$$
;

$$b/\lim_{x \to +\infty} \frac{e^{\frac{x}{2}lnx}}{x^3} = \lim_{x \to +\infty} \frac{e^{\frac{x}{2}}}{(\frac{x}{2})^3} \times \frac{(\frac{x}{2})^3 lnx}{x^3}$$

$$= \lim_{x \to +\infty} \frac{e^{\frac{x}{2}}}{(\frac{x}{2})^3} \times \frac{1}{8} \times lnx$$

$$= +\infty \qquad \text{car } \lim_{x \to +\infty} \frac{e^{\frac{x}{2}}}{(\frac{x}{2})^3} = +\infty \text{ et } \lim_{x \to +\infty} lnx = +\infty .$$

c/
$$\lim_{x \to +\infty} x^2 - 2\ln x = \lim_{x \to +\infty} x^2 (1 - 2\frac{\ln x}{x^2})$$
$$= +\infty \operatorname{car} \lim_{x \to +\infty} \frac{\ln x}{x^2} = 0.$$

$$\frac{d}{x \to +\infty} x^3 - e^x = \lim_{x \to +\infty} x^3 \left(1 - \frac{e^x}{x^3}\right)$$
$$= -\infty \quad \operatorname{car} \lim_{x \to +\infty} \frac{e^x}{x^3} = +\infty.$$

EXERCICE

A. Soit P le polynôme défini sur \mathbb{R} par : $P(x) = x^3 - x^2 - 4x + 4$.

1- Déterminer les nombres réels a, b et c tels que, pour tout x:

$$P(x) = (x-1)(ax^2 + bx + c).$$

2- Utiliser cette factorisation pour résoudre chacune des équations suivantes :

a)
$$x^3 - x^2 - 4x + 4 = 0$$
.

b)
$$(\ln x)^3 - (\ln x)^2 - 4\ln x + 4 = 0$$
.

c)
$$4^{2x} - 4^x + 4^{1-x} - 4 = 0$$
.

B. Déterminer la fonction dérivée de la fonction proposée

$$a/f: \mapsto \sqrt[3]{x}$$
; $b/f: x \mapsto \frac{\ln x}{x^{\frac{1}{3}}}$; $c/f: x \mapsto x^{\frac{5}{3}}e^x$; $d/f: x \mapsto (x-1)(x+2)^{-\frac{1}{3}}$.

C. Donner une primitive sur l'intervalle I indiqué de la fonction f.

$$a/f(x) = \frac{1}{\sqrt{(4x-1)^3}}$$
 $I = \frac{1}{4}$; $+\infty$ [.

$$b/f(x) = \frac{1-2x}{(x^2-x)^{\frac{5}{4}}}$$
 $[=]-\infty;0[.$

$$c/f(x) = (x+1)\sqrt{x^2+2x-3}$$
 I =]1;+\infty[.