Chapitre 6

CALCUL INTÉGRAL

Objectif pédagogique principal:

• Découvrir une nouvelle notion qui servira à calculer des aires de surfaces planes.

Leçon 1: NOTION D'INTÉGRALE

Objectifs pédagogiques :

- Calculer une intégrale.
- Utiliser l'intégrale pour déterminer une primitive de fonction.
- Calculer la valeur moyenne d'une fonction sur un intervalle.

1.1) Définition

$\mathcal{D}_{\acute{e}finition}$

Soit f une fonction continue sur un intervalle I de \mathbb{R} , a et b, éléments de I.

On appelle **intégrale de** a à b de la fonction f, le **nombre réel** noté $\int_a^b f(x)dx$ tel que :

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

où F est une **primitive** de f sur l'intervalle I.

$\mathcal{R}_{emarque}$

- $\int_a^b f(x)dx$ se lit : « somme ou intégrale de a à b, f(x)dx ».
- La variable *x* est une **variable muette** : elle disparait lorsque le calcul est effectué.
- La variable x peut être remplacée par t, u ou tout autre lettre à l'exception de a et b.

Application : Calculer les intégrales suivantes.

$$I = \int_0^4 (x-3)dx$$

$$J = \int_2^1 \left(t^2 + t - \frac{1}{t}\right)dt$$

$K = \int_0^1 t e^{t^2 - 1} dt$	$L = \int_{1}^{e} \frac{\ln x}{x} dx$
$M = \int_{\frac{\pi}{2}}^{0} \frac{u \cos u - \sin u}{u^2} du$	$N = \int_0^{\pi} \sin\left(2x - \frac{\pi}{4}\right) dx$

1.2) Valeur moyenne

$\mathcal{D}_{cute{e}finition}$

Soit f une fonction continue sur un intervalle [a;b].

La valeur moyenne de la fonction f sur [a;b] est le nombre réel μ défini par :

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$

Application:	
--------------	--

Calculer la valeur moyenne de la fonction sinus sur $[0;\pi]$.

Propriétés algébriques de l'intégrale 1.3)

Les propriétés suivantes découlent de la définition d'une intégrale.

ropriété

Soit f et g deux fonctions continues sur un intervalle I. Pour a, b, c éléments de I, on a :

$$(1) \qquad \int_{a}^{a} f(x)dx = 0$$

(3)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

(2)
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

(2)
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$
 (4)
$$\int_{a}^{b} (\alpha f + \beta g)(x)dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx$$

- La relation (3) est la **relation de CHASLES** pour les intégrales.
- La relation (4) traduit la linéarité de l'intégrale.

Intégrale et inégalités

Propriété

Soit f et g deux fonctions continues sur l'intervalle [a;b].

- Si $f \ge 0$ sur [a;b] alors $\int_{a}^{b} f(x)dx \ge 0$
- Si $f \ge g$ sur [a;b] alors $\int_a^b f(x)dx \ge \int_a^b g(x)dx$
- Si $\forall x \in [a; b], m \le f(x) \le M$ alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ (inégalité de la moyenne)

Application 1:

Déterminer un encadrement de l'intégrale suivante : $I = \int_{1}^{y} \frac{1}{1+\sqrt{x}} dx$

Application 2:

Soit f la fonction définie sur $[1; +\infty[$ par : $f(x) = \sqrt{x}e^{-x}$.

Pour $\alpha > 1$, on pose $I(\alpha) = \int_{\alpha}^{2\alpha} f(x)dx$.

1. Déterminer la fonction dérivée de la fonction définie sur \mathbb{R} par $u(x)=(x+1)e^{-x}$.

2. Démontrer que, pour tout $x \in]1; +\infty[$, on a $e^{-x} \le f(x) \le xe^{-x}$.

3. En déduire un encadrement de $I(\alpha)$.

4. Calculer la limite de $I(\alpha)$ quand α tend vers $+\infty$.

Leçon 2: TECHNIQUES DE CALCUL D'UNE INTÉGRALE

Objectifs pédagogiques :

- Calculer une intégrale en utilisant une intégration par parties.
- Calculer une intégrale en faisant un changement de variable affine.
- Calculer une intégrale en utilisant la parité ou la périodicité d'une fonction.

Nous avons vu que l'intégrale se calcule à l'aide d'une primitive de la fonction à intégrer. Mais très souvent il n'est pas évident de trouver **directement** cette primitive.

Nous verrons donc dans cette leçon des techniques qui nous \ll faciliterons \gg le calcul de l'intégrale.

2.1) L'intégration par parties

Propriété

Soit u et v deux fonctions dérivables sur un intervalle I et soit a et b deux éléments de I. On a:

$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx.$$

Application 1 : Calculer les intégrales suivantes, à l'aide d'une intégration par parties.

$\forall x \in \mathbb{N}^*, I_n = \int_1^1 x^n \ln x dx$	$J = \int_0^\infty t e^{-t} dt$
$L = \int_0^{\frac{\pi}{2}} \sin^2 x dx$	$M = \int_1^2 (2t+1)\sqrt{t+5}dt$

Application 2:

Calculer les intégrales suivantes, à l'aide de deux intégrations par parties.

$\forall \lambda \in]1;+\infty[,$	$I_{\lambda} = \int_{1}^{\lambda} \left(1 - x^{2}\right) e^{-x} dx$	$I = \int_0^\pi e^t \cos t dt$

2.2) Changement de variable

Application:

Calculer l'intégrale suivante, à l'aide d'un changement de variable.

$I - \int \lambda \sqrt{1 + \lambda u \lambda}$	
J0	

2.3) Intégrales de fonctions paires, impaires ou périodisque

 $\mathcal{P}_{ropriété}$

Soit f une fonction continue sur un intervalle I et soit a un élément de I.

- Si f est **paire** sur I, alors $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx.$
- Si f est **impaire** sur I, alors $\int_{-a}^{a} f(x)dx = 0.$
- Si f est **périodique** de période T sur I, alors $\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx.$

Application 1 : Calculer les intégrales suivantes :

$\int_{-\pi}^{\pi} \sin \frac{x}{3} \sin^2 x dx$	$\int_{-1}^{1} \left x^3 \right dx$
$\int_0^{2\pi} \frac{\sin x}{2 + \cos x \sin^2 x} dx$	

Leçon 3: INTÉGRALE ET CALCUL D'AIRES

Objectif pédagogique :

• Calculer l'aire d'une partie du plan délimitée par deux courbes et les droites d'équations x = a et x = b.

3.1) Relation entre aire et intégrale

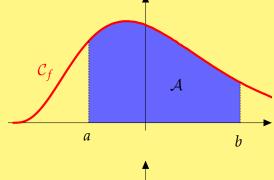
$\mathcal{P}_{ropriété}$

Soit f et g deux fonctions continues sur un intervalle [a;b] et soit \mathcal{C}_f et \mathcal{C}_g leurs représentations graphiques respectives dans un repère orthogonal (O,I,J). On appelle unité d'aire, l'aire du rectangle construit à partir des points O,I et J.

Soit A l'aire (en unités d'aire) délimitée par la courbe C_f , l'axe des abscisses et les droites x = a et x = b.

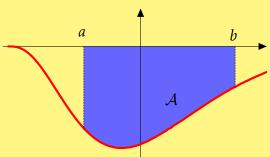
• Si f est **positive** sur [a;b] alors :

$$\mathcal{A} = \int_{a}^{b} f(x) dx$$



• Si f est **négative** sur [a; b] alors :

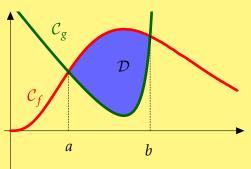
$$\mathcal{A} = -\int_{a}^{b} f(x)dx$$



Soit \mathcal{D} l'aire comprise entre les deux courbes et les droites x = a et x = b.

• Si f - g est **positive** sur [a; b] alors:

$$\mathcal{D} = \int_{a}^{b} (f(x) - g(x)) dx$$



3.2) Applications

Application 1 :

Calculer l'aire comprise entre la parabole d'éc droites d'équations $x = 0$ et $x = 1$.	té 1 cm en abscisses et 2 cm en ordonnées. quation $y = x^2$, la première bissectrice et les
Application 2:	
On considère deux fonctions f et g définies res	pectivement sur]0;+∞[par :
$f(x) = \frac{\ln x}{x} \qquad ;$	$g(x) = \frac{\ln^2 x}{x}.$
On note \mathcal{C}_f et \mathcal{C}_g les courbes respectives des for	antinum Carl
1. Démontrer que les courbes C_f et C_g adm sera les coordonnées.	nettent deux points communs dont on préci
1. Démontrer que les courbes C_f et C_g adm sera les coordonnées.	netton f et g. nettent deux points communs dont on préci
1. Démontrer que les courbes C_f et C_g adm sera les coordonnées.	nettent deux points communs dont on préci
1. Démontrer que les courbes C_f et C_g adm sera les coordonnées.	nettent deux points communs dont on préci
1. Démontrer que les courbes C_f et C_g adm sera les coordonnées.	nettent deux points communs dont on préci
1. Démontrer que les courbes \mathcal{C}_f et \mathcal{C}_g adm sera les coordonnées.	nettent deux points communs dont on préci
1. Démontrer que les courbes \mathcal{C}_f et \mathcal{C}_g adm sera les coordonnées.	nettent deux points communs dont on préci
 Démontrer que les courbes C_f et C_g adm sera les coordonnées. Étudier les positions relatives des courbes 	nettent deux points communs dont on préci $ \cdot \cdot$
 Démontrer que les courbes C_f et C_g adm sera les coordonnées. Étudier les positions relatives des courbes 	nettent deux points communs dont on préci $ \cdot \cdot$

	Calc $e = e$.		r 1′	air	e d	éli	mi	itée	e p	ar	le	s	COI	ur	be	s (\mathcal{C}_f	et	C	g	et	le	es (dro	oit	es	ď	éq	ua	itio	ons	x	=	1	et
•			• • •				• •			. 			٠.					• •		. 				• • •			• •			••	. 			• •	
	• • • •	· • •	• • •				• •			. 										· • •				• • •	· • •		• •			• •	. . .			• •	
	• • • •	· • • •					• •											. . .		· • •				• • •			• •				. . .			• •	
	• • • •																	. . .		· • •				• • •	· • •		• •				. 			• •	
	· · · ·		• • •				• •													· • •				• • •			• •							• •	
		· • • •					• •											. . .		· • •					· • •									• •	
																	 							• •				. 				
		· • • •														•					•														