LEÇON 8: PRIMITIVES ET CALCUL INTEGRAL

1 - PRIMITIVES D'UNE FONCTION

1.1-Définition

Soit f une fonction et I un intervalle sur lequel f est définie. Les **primitives** de f sur I (s'il en existe) sont les **fonctions** F définies et dérivables sur I vérifiant pour tout $x \in I$: F'(x) = f(x).

Exemples

- ➤ Considérons la fonction $f: x \mapsto x^2$, les fonctions $f: x \mapsto \frac{x^3}{3}$ et $x \mapsto \frac{x^3}{3} + 7$ sont les deux primitives de f sur \mathbb{R} .
- ➤ La fonction In est une primitive sur $]0;+\infty[$ de la fonction $x\mapsto \frac{1}{x}$.

1.2-Théorèmes

a) Théorème 1

Toute fonction continue sur un intervalle I admet des primitives sur I.

b) Théorème 2

Soit f une fonction continue sur un intervalle I et F une primitive de f sur I. Les primitives de f sur I sont les fonctions $x \mapsto F(x) + k$ où k est une constante réelle.

c) Théorème 3

Soit f une fonction continue sur un intervalle I, $a \in I$ et $b \in \mathbb{R}$.Il existe une unique primitive de f sur I prenant la valeur b en a.

1.3-Détermination pratique des primitives

a) Méthode

En pratique pour déterminer une primitive d'une fonction sur un intervalle, on utilise les tableaux suivants :

Tableau des primitives des fonctions élémentaires

Fonctions	Primitives	Intervalle
$x \mapsto k$	$x \mapsto kx$	\mathbb{R}
$x \mapsto x$	$x \mapsto \frac{x^2}{2}$	\mathbb{R}
$x \mapsto x^n \text{ avec } n \in \mathbb{Z} \setminus \{-1\}$	$x \mapsto \frac{x^{n+1}}{n+1}$] $-\infty$;0[ou]0;+ ∞ [si n < -1
$x \mapsto \frac{1}{x^n} n \neq 1$	$x \mapsto -\frac{1}{(n-1)x^{n-1}}$]-∞;0[ou]0;+∞[
$x \mapsto \sqrt{x}$	$x \mapsto \frac{2}{3}x^{\frac{3}{2}}$]0;+∞[
$x \mapsto \frac{1}{x}$	$x \mapsto \ln x $]-∞;0[ou]0;+∞[
$x \mapsto e^x$	$x \mapsto e^x$	\mathbb{R}

Tableau des primitives et opérations sur les fonctions

Fonctions	Primitives	Remarque
u+v	U+V	
ku	kU	
$u'u^n$ avec $n \in \mathbb{Z} \setminus \{-1\}$	$\frac{u^{n+1}}{n+1}$	$si \text{ n} < -1 \text{ alors u} \neq 0 \text{ sur I}$
$\frac{u'}{u^n}$ $n \neq 1$	$-\frac{1}{(n-1)u^{n-1}}$	u ≠ 0
$\frac{\mathrm{u}'}{\sqrt{\mathrm{u}}}$	$2\sqrt{u}$	u > 0 sur I
$\frac{u'}{u}$	$\ln u $	u ≠ 0 sur I
u'e"	e^u	

$x \mapsto u(ax+b)$	$x \mapsto \frac{1}{a}U(ax+b)$	
$v'x (u' \circ v)$	$U \circ V$	

b) Applications

Déterminer une primitive des fonctions suivantes :

1. Sur
$$\mathbb{R}^*$$
 de f: $x \mapsto 2x^3 + 3x^2 + \frac{5}{x^3}$

2. Sur
$$\mathbb{R}$$
 de g: $x \mapsto (3x^2-2x+3)(x^3-2x^2+3x+1)^4$

3. Sur
$$\mathbb{R}$$
 de h : $x \mapsto \frac{x}{x^2 + 1}$

4. Sur
$$\mathbb{R}\setminus\left\{-\frac{2}{3}\right\}$$
 de $\mathbf{u}:x\mapsto\frac{5}{3x+2}$

5. Sur
$$\mathbb{R}^*$$
 de k : $x \mapsto \frac{5x^7 - 2x^4 + 8x^3 - 5x^2 + 6x - 1}{x^4}$

2 - CALCUL INTEGRAL

2.1-Généralités

a. Théorème

Soit f une fonction contenue sur un intervalle I, a et b deux éléments de I et **F** une primitive de f sur I.

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Remarque

Soit f une fonction dérivable sur un intervalle, I dont la dérivée, f', est contenue sur I et a et b deux éléments de I. La fonction f est une primitive sur I de la fonction f' continue sur cet

4

intervalle, donc :
$$f(b)-f(a) = \int_a^b f'(x)dx$$
.

b. Notations et vocabulaire

• On écrit :
$$\int_a^b f(x) dx = [F(x)]_a^b = F(b) - F(a)$$

- L'expresssion « $\lceil F(x) \rceil$ » se lit : « F(x) pris entre a et b »
- a et b sont les bornes de l'intégrale.

c. Corollaire

Soit f une fonction continue sur un intervalle I, a et b deux éléments de I.

(1) On a :
$$\int_{0}^{a} f(t)dt = 0$$
.

(2) On a :
$$\int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt$$
.

d. Applications

1) Calculer:
$$\int_{1}^{4} (5x^3 + 4x^2 + 3x - 5) dx$$

2) Calculer:
$$\int_{2}^{5} (5e^{2t} - 2e^{5t}) dt$$

3) Calculer:
$$\int_{1}^{3} \frac{x}{x^2 + 1} dx$$

4) Calculer :
$$\int_{1}^{e} \frac{\ln x}{x} dx$$

2.2- Propriétés algébriques

a. Relation de Chasles

Soit f une fonction continue sur un intervalle I, et a, b, c trois éléments de I.

On a:
$$\int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt = \int_{a}^{c} f(t)dt$$

b. Linéarité

Soit f et g deux fonctions continues sur un intervalle I, et a , b deux éléments de I.

(1) On a:
$$\int_{a}^{b} (f(t) + g(x)) dt = \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt$$
.

(2) On a :
$$\int_{a}^{b} \alpha f(t) dt = \alpha \int_{a}^{b} f(t) dt.$$

c. Application

Calculer:
$$\int_{0}^{5} |(x-1)^{2}-4| dt$$

2.3-Valeur moyenne

a. Définition

Soit f une fonction continue sur un intervalle I et [a;b] un intervalle non déduit à un point inclus dans I. La valeur moyenne de f sur [a;b] est le nombre réel μ défini par : $\mu = \frac{1}{b-a} \int_a^b f(t) dt$.

b. Application

Déterminer la moyenne :

- 1) De $x \mapsto x^2 \, \text{sur} \, [1;4]$.
- 2) De $x \mapsto x^2 \text{ sur } [-1;1]$

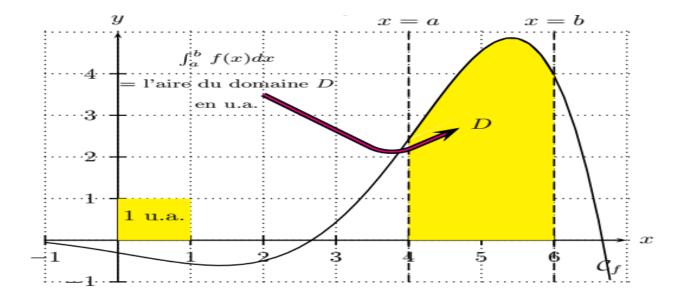
2.4-Calcul d'aire

a. Définition

Soit f une fonction continue et positive sur un intervalle [a;b] et (C_f) sa courbe représentative. La mesure de l'aire , en Ua , sous la courbe (C_f) entre les abscisses a et b est donné par :

5

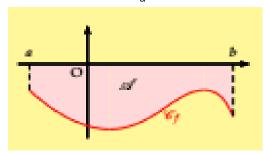
$$A = \int_{a}^{b} f(t) dt \times U_{a}$$



b. Propriété

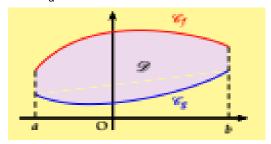
• Soit f une fonction continue sur un intervalle [a;b] telle que $f \le 0$. Soit \mathcal{A} l'aire délimitée par la courbe, l'axe des abscisses et les droites x = a et x = b.

On a a lors :
$$\mathcal{A} = -\int_{a}^{b} f(x) dx$$



• Soient deux fonctions f et g continues sur un intervalle [a;b] telles que $f \ge g$. Soit $\ \ \,$ l'aire comprise entre les deux courbes et les droites x = a et x = b. On a alors :

$$= \int_{a}^{b} (f - g) dx$$



c. Applications

Application 1

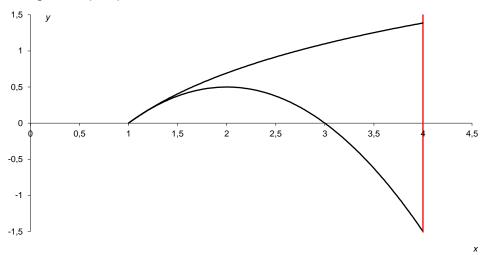
Soit *h* la fonction définie sur \mathbb{R} par $h(x) = -\frac{1}{2}x^2 + 2x - \frac{3}{2}$.

Sur le graphique joint, le plan est muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$ dans lequel on a tracé les courbes représentatives des fonctions h et logarithme népérien (ln) sur l'intervalle [1; 4]. On a a tracé également la droite (d) d'équation x = 4.

6

- 1. a. Démontrer que $\int_{1}^{4} h(x) dx = 0$.
- b. Illustrer sur le graphique le résultat de la question précédente.
- 2. On note D le domaine du plan délimité par la droite (d) et les courbes représentatives des fonctions *h* et logarithme népérien sur l'intervalle [1 ; 4].

En utilisant une intégration par parties, calculer l'aire de D en unités d'aire.



Application 2

- a. Montrer que la fonction F définie par $F(x) = (-x^2 4x 5)e^{-x}$ est une primitive de la fonction f.
- b. Calculer l'aire en cm² de la région du plan comprise entre les axes de coordonnées, la courbe C et la droite d'équation x = 3. Donner la valeur exacte puis une valeur approchée à 10^{-2} près.

