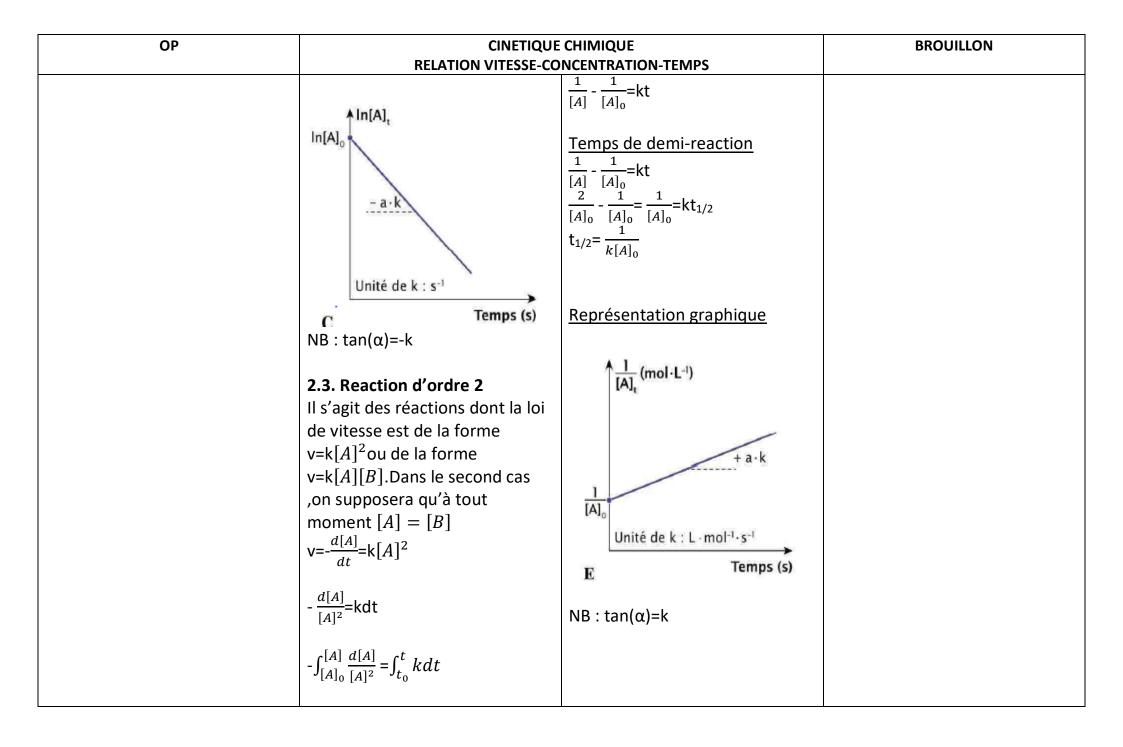
OP	REACTION CHIMIQUE		BROUILLON
	NOTION DE REAC		
OP		-Apparition ou changement de couleur. Ex: dosage avec les indicateurs colorésApparition ou changement d'odeur Ex: transformation du vin en vinaigre. 3. Facteurs influençant une réaction chimique La vitesse d'une réaction chimique donnée est influencée par un ou plusieurs facteurs tels que: -la température : une élévation de la température accélère les réactions ou les transformationsla concentration en réactifsles catalyseurs : Un catalyseur est un corps qui accélère une réaction chimique spontanée sans subir lui-même de modifications permanentes.	BROUILLON
	Ex : combustion du butane	sans subir lui-même de modifications permanentes. L'action d'un catalyseur sur une réaction constitue une catalyse de cette réaction. On distingue	
		3 types de catalyseurs :	


ОР	REACTION CHIMIQUE		BROUILLON	
	*la catalyse homogène :	I CHIMIQUE		
	Le catalyseur est présent dans le même état que les réactifs avec lesquels il forme un mélange			
	homogène. *la catalyse hétérogène : Le catalyseur forme une phase			
	distincte de celles des réactifs. *la catalyse enzymatique : Les enzymes catalysent la plus part des réactions qui assurent			
	les fonctions vitales de la croissance de l'organismeLa lumière : certaines réactions ne se produisent qu'avec une			
	vitesse appréciable qu'en présence de la lumière.			

OP	CINETIQUE CHIMIQUE		BROUILLON
	VITESSE D'UNE RE		
	1. Généralité.	$aR_1 + bR_2 \rightarrow cP_1 + dP_2$	
	La cinétique chimique est		
	l'étude de la vitesse d'une	Le volume étant constant, la	
	réaction chimique. Cette étude	vitesse de la réaction est établie	
	est importante en 2 points de	expérimentalement par la	
	vue:	relation suivante :	
	-du point de vue pratique, il est fondamental quand l'on réalise	$V = -\frac{1}{a} \times \frac{d[R1]}{dt} = -\frac{1}{b} \times \frac{d[R2]}{dt}$	
	la synthèse d'un produit au labo ou en en milieu industriel.	$= \frac{1}{c} \times \frac{d[P1]}{dt} = \frac{1}{d} \times \frac{d[P2]}{dt}$	
	-du point de vue théorique, la		
	cinétique chimique permet	La vitesse s'exprime en mole par	
	d'aborder le processus suivi par	unité de volume et par unité de	
	la réaction c-à-d le mécanisme	temps (mol/l/s ; mol/l/min ;	
	réactionnel.	mol/l/h)	
	2. Définition de la vitesse d'une réaction chimique La vitesse d'une réaction chimique est la variation d'une certaine quantité de l'un des constituants du milieu réactionnel par unité de temps. 3. Expression de la vitesse d'une réaction chimique Soit la réaction chimique dont l'équation-bilan est :	NB: a, b,c,d sont les coefficients steochiométriques. La vitesse d'une réaction est une grandeur positive.	

OP	CINETIQUE	BROUILLON	
	VITESSE DE FORMATION –VITESSE DE DISPARITION		
	1. VITESSE DE FORMATION	1. VITESSE DE DISPARITION	
	1.1. Définition	1.1. Définition	
	La vitesse de formation du	La vitesse de disparition du	
	produit à la date t est égale à la	réactif à la date t est égale à la	
	dérivée de la quantité de	dérivée de la quantité de	
	matière ou de la concentration	matière ou de la concentration	
	molaire du produit par rapport	molaire du réactif par rapport	
	au temps à la date considérée.	au temps à la date considérée.	
	Elle traduit la rapidité avec	Elle traduit la rapidité avec	
	laquelle le produit se forme.	laquelle le réactif disparait.	
	1.2. Expression	1.2. Expression	
	the sta		
	*Vitesse moyenne de	*Vitesse moyenne de	
	formation entre 2 instants t ₂ et	disparition entre 2 instants t ₂ et	
	t ₁	[p ₁] ₂ [p ₁] ₁	
	$V_{\rm m} = \frac{[P1]2 - [P1]1}{t_2 - t_1}$ (mol ⁻¹ .L ⁻¹ .s ⁻¹)	$V_{m} = -\frac{[R1]2 - [R1]1}{t_2 - t_1}$	
	$t_2 > t_1$ et $[P1]2 > [P1]1$	$t_2 > t_1$ et $[R1]1 > [R1]2$	
	*Vitesse instantanée de	*Vitesse instantanée de	
	formation à l'instant t ₁	disparition à l'instant t ₁	
	$V_{1 (P1)} = (\frac{d[P1]}{dt})_{t1}$	$V_{1 (R1)} = -(\frac{d[R1]}{dt})_{t1}$	

OP	CINETIQUE	BROUILLON	
	RELATION VITESSE-CO		
	1. LOI DE VITESSE D'UNE	ou des fractions. Ils peuvent	
	REACTION CHIMIQUE	être aussi nuls, ils ne sont pas	
		prévisibles et leurs valeurs ne	
	1.1. Définition	peuvent être déterminées	
	La loi de vitesse d'une réaction	expérimentalement. Cependant	
	chimique est la relation entre la	ils peuvent être égaux aux	
	ou les concentrations molaires	coefficients steochiometriques.	
	des réactifs et la vitesse de la		
	réaction. Elle est établie de	2. ORDRE D'UNE REACTION	
	manière expérimentale pour		
	chaque type de réaction.	2.1. Réaction d'ordre 0	
	1.2. Expression générale de la	Il s'agit des réactions dont la loi	
	loi de vitesse	de vitesse est de la forme	
	Soit la réaction suivante :	$v=k[A]^0$	
	$aA + bB \rightarrow cC + dD$	Soit la réaction suivante :	
	$v=k[A]^n[B]^m$	$A \rightarrow B$	
	v=vitesse instantanée	t =0 C ₀ 0	
	k= constante de vitesse	t≠0 C ₀ -x x	
	n= ordre partiel par rapport au	$[A]_0 = C_0$ et $[A] = C_0 - x$	
	réactif A		
	m= ordre partiel par rapport au	$v=-\frac{d[A]}{dt}=k[A]^{0}=k$ $-\frac{d[A]}{dt}=k d[A]=-kdt$	
	réactif B	dt $d[A]$ $d[A]$ $d[A]$	
	n+m=ordre global	$\frac{1}{dt}$ =K $\alpha[A]$ =-K αt	
	[A] et [B]=concentration des	$\int_{[A]_0}^{at} d[A] = -k \int_{t_0}^{t} dt$	
	réactifs A et B.	$[A] - [A]_0$ =-kt (k est en	
	NB : Les ordres partiels peuvent	mol/L/s)	
	être des nombres entiers ou des		

RELATION VITESSE-CONCENTRATION-TEMPS Représentation graphique $v=k[A]^1$ $v=-\frac{d[A]}{dt}=k[A]^1$ $v=-\frac{d[A]}{dt}=k[A]$ $v=-\frac{d[A]}{dt}=k[A]$	
$v = \frac{d[A]}{dt} = k[A]^{1}$	
$ \begin{array}{c} v = \frac{d[A]}{dt} \\ -\frac{d[A]}{dt} \\ -\frac{d[A]}{dt} = k[A] \\ -\frac{d[A]}{dt} = \int_{t_0}^{t} k dt \\ -\frac{d[A]}{ A } = k[1] \\ -d$	

ОР	DETERMINATION DE L'	BROUILLON	
	1. Définition L'énergie d'activation Ea est l'énergie nécessaire pour emmener les molécules réagissant dans un état où elles peuvent donnée une nouvelle structure appelée complexe activée qui est à la base de la rupture des liaisons initiales et de la formation des liaisons des produits. Remarque: A une température donnée, une réaction est d'autant plus grande que l'énergie d'activation est grande. Ep Complexe activé Ea C.R. Fig. 3 - Énergie potentielle au niveau moléculaire en fonction de la coordonnée de réaction (C.R.).	2. Energie d'activation L'énergie d'activation d'une réaction est donnée par la loi d'Arrhenius : $k=A.\exp(-\frac{E_a}{RT})$ ou $lnk=lnA-\frac{E_a}{RT}$ k=constante de vitesse $A=$ facteur de fréquence, diffèrent pour chaque reaction.il a la même unité que k E_a =énergie d'activation (J.mol ⁻¹) T=température (K) R=constante des gaz parfaits (8,314 J.K ⁻¹ .mol ⁻¹) à T_1 , $lnk_1 = lnA - \frac{E_a}{RT_1}$ à T_2 , $lnk_2 = lnA - \frac{E_a}{RT_2}$ lnk_1 - $lnk_2 = ln(\frac{k_1}{k_2}) = \frac{E_a}{R}(\frac{1}{T_2} - \frac{1}{T_1})$ E_a = $R \times \frac{T_1 \times T_2}{T_1 - T_2} \times ln\frac{k_1}{k_2}$	