Lycée Technique de Yopougon

Prof : Mr Diomandé Goh Giscard

Année scolaire : 2019 - 2020

Classes de Terminale F7

Exercices de Microbiologie [dans le cadre du soutien pédagogique]

Exercice 1 : Nutrition bactérienne

Reproduisez et complétez le tableau ci-dessous, en rapport avec les types nutritionnels des bactéries.

Types de besoin	Nature du besoin	Types trophiques
_	- Lumière	
		- Chimiotrophe
		- Autotrophe
		- Hétérotrophe
	- Indispensables	
		- Prototrophe

Exercice 2 : Recherche et dénombrement des staphylocoques en Industrie Alimentaire.

- 1- Citez trois (3) caractères généraux des staphylocoques.
- 2- Quel est l'intérêt de leur recherche et dénombrement en industrie agro-alimentaire ?
- 3- La gélose nutritive, la gélose de Chapman et la gélose de Baird Parker peuvent être utilisés dans la recherche et le dénombrement des staphylocoques pathogènes. Pour chacun de ces milieux, donnez et expliquez l'aspect des colonies caractéristiques.
- 4- Pour la confirmation de l'identité de ces colonies caractéristiques, on réalise les tests suivants :
- a) Coloration de Gram
- b) Type respiratoire
- c) Catalase
- d) Coagulase
- e) DNAse
- f) Thermonucléase
- 4.1- Quelle différence existe-t-il entre la DNAse et la thermonucléase ?
- 4.2- Pourquoi en pratique recherche-t-on la thermonucléase au lieu de la DNAse ?
- 4.2- Citez les milieux utilisés pour réaliser chacun des tests b, c, d et f.
- 4.3 Décrivez de façon précise la technique de recherche des caractères b, c, d et f.

Exercice 3 : Contrôle de la qualité des sardines congelées

Pour contrôler la qualité des sardines pêchées au large des côtes d'Abidjan et stockées au congélateur, on réalise un échantillonnage dans les conditions aseptiques.

- 1- Quel matériel de laboratoire est-il indispensable pour effectuer un prélèvement aseptique ?
- 2- Pour l'analyse microbiologique, on procède à une revivification sous forme de suspension mère.
- 2.1- Comment prépare -t-on la suspension mère en Microbiologie ? (Précisez les quantités de sardines et de liquide de dilution nécessaires.)
- 2.2- Quel est le rôle de cette étape de revivification dans cette analyse ?
- 3- La revivification ayant réalisée, l'isolement se fait sur le milieu TCBS et la gélose au cétrimide.
- 3.1- Précisez pour chacun de ces milieux, le germe recherché et l'aspect des colonies attendues.
- 3.2- Expliquez l'aspect des colonies attendues sur la gélose TCBS.
- 3.3- Donnez la classification selon Bergey du genre bactérien isolé sur TCBS.

- 4- Les colonies caractéristiques obtenues sur la gélose au cétrimide sont ensemencées sur les milieux de King A et King B.
- 4.1- Quelle est la couleur du pigment produit sur le milieu de King A? Précisez le nom de ce pigment.
- 4.2- Précisez la division, la famille et le type respiratoire de l'espèce qui produit ce pigment,.

Exercice 4 : Coloration de Gram

La technique de la coloration de Gram est exécutée selon un ordre bien précis. Un ordre quelconque vous est proposé comme suit :

- a) Observation au microscope à l'immersion;
- b) Décolorer à l'alcool;
- c) Colorer à la safranine ;
- d) Laver à l'eau distillée;
- e) Colorer au violet de gentiane ;
- f) Renforcer au lugol;
- g) Préparer un frottis bactérien.
- 1- Enoncez le principe de la coloration double de Gram.
- 2- Qu'est-ce qu'une coloration double ?
- 3- Donnez l'ordre exact de la technique de la coloration double de Gram.
- 4- Relevez, sous forme de tableau, cinq différences entre la coloration de Gram et l'examen à l'état frais.

Exercice 5: Etude du milieu MEVAG

Le milieu MEVAG est utilisé pour l'étude d'un caractère important dans le processus d'identification bactérienne. La composition de ce milieu en gramme par litre est donnée dans le tableau ci-dessous :

Composition	Quantités
Extraits de viande	3 g
Chlorure de potassium	5 g
Glucose	10 g
Rouge de phénol	20 mg
Agar	3 g
Eau distillée	1000 mL

- 1- Que signifie le sigle MEVAG?
- 2- Quel est l'état physique de ce milieu ? justifiez votre réponse.
- 3- Donnez le rôle de chacun des composants de ce milieu.
- 4- Quelle est la technique d'ensemencement de ce milieu ?
- 5- Quel caractère biochimique recherche-t-on sur ce milieu?
- 6- Représentez, sous forme de schémas, les résultats possibles.

Exercice 6 : Dénombrement des entérobactéries

Les résultats du dénombrement des entérobactéries en milieu solide sont consignés dans le tableau ci-dessous :

(v = 1mL)	1	0^{0}	10)-1	10)-2	10)-3
Entérobactéries	> 150	> 150	148	143	15	14	2	1
Coliformes totaux	> 150	> 150	18	16	2	1	0	0
Coliformes thermotolérants	8	6	0	0	0	0	0	0

- 1- Enoncez le principe du dénombrement en milieu solide.
- 2- Quelle technique d'ensemencement a-t-on utilisé au cours de dénombrement ? justifiez votre réponse.
- 3- Décrivez brièvement cette technique de dénombrement.
- 4- Calculez le nombre (N) de microorganismes dans chaque cas.
- 6- En milieu liquide, on obtient les résultats suivants :

Dilutions	10^{0}	10-1	10-2	10-3	10-4
Résultat 1	+++	+++	+++	++-	
Résultat 2	+++	++-	++-	+	

- 6.1- Comment appelle-t-on cette technique de dénombrement en milieu liquide ?
- 6.2- Faites le schéma des dilutions et ensemencements ayant conduit au résultat 2
- 6.3- Combien de pipettes stériles de 1 mL a-t-on utilisé pour aboutir au résultat 2 ?
- 6.4- A l'aide la table de Mac Grady, calculez le nombre (N) pour les résultats 1 et 2.

Fin - Bon courage à tous!