PROFESSEUR : KOUKOUGNON DIDIER		ANNEE SCOLAIRE: 2019-2020		
ETABLISSEMENT : LTY	EXERCICES DE CHIMIE	MATIERE: Chimie		
SPECIALITE : Génie alimentaire		CLASSE: T ^{le} F7		

CHIMIE ORGANIQUE

Exercice 1

Ecrire la formule semi-développée et le nom de la famille chimique de :

a) 2,3-dimethylpentane; k) 4-éthyl-3-methylheptane

b) 2-methylpropène ; l) 2,3-dimethylbut-1-ène

c) Propyne ; m) 4-methylpent-2-yne

d) éthanal ; n) 2-ethyl-3-methylpentanal

e) propanone ; o) 4-methylhexan-3-one

f) acide 2-methylpropanoïque ; p) acide benzoïque

g) chlorure de 2-methylpropanoyle ; q) chlorure de benzoyle

h) N-methylethylamine ; r) N,N-dimethyléthanamine

i) anhydride méthanoïque ; s) anhydride 2- methylpropanoïque

j) 3-methylpentan-2-ol

Exercice 2

La combustion complète de 3,6g d'un composé de formule C_xH_yO_z fournit 8,7g de dioxyde de carbone et 3,7g d'eau.

- a) Quelle est la composition centésimale de la substance ?
- b) Quelle est la masse molaire moléculaire de la substance, sachant que sachant que la densité sa vapeur par rapport à l'air est d=2,48 ?
- c) Quelle est la formule brute de la substance ?

Exercice 3

L'analyse élémentaire d'un composé (A) a donné 62% de carbone, 27,6% d'oxygène et 10,4% d'hydrogène.

Données : $M_H= 1$ g/mol $M_C= 12$ g/mol $M_O= 16$ g/mol

- 1)Sachant que la masse molaire de (A) est égale à 58g/mol, déterminer sa formule brute.
- 2)Donner la famille, la formule semi-développée et le nom de chaque isomère de (A).
- 3)Le composé (A) ne réagit pas avec le réactif de Schiff. Identifier (A).
- 4) Comment peut-on préparer (A) à partir d'un alcool (B) ?
- 5)L'isomère (B') de (B) subit une oxydation ménagée par l'oxygène de l'air.
 - a) Décrire cette expérience et identifier les produits obtenus.
 - b) Ecrire les équation- bilans des réactions.

Exercice 4

Un alcool de formule brute générale C_nH_{2n+2}O contient en masse 21,62% d'oxygène. Déterminer la formule brute de cet alcool ainsi que ses formules semi-développées possibles.

On donne : $M_H=1$ g/mol ; $M_C=12$ g/mol ; $M_o=16$ g/mol

EXERCICE 5

A est un composé organique de formule brute C₃H₆O₂.

- 1. A quel famille le composé A peut-il appartenir ?
- 2. Ecrire toutes les équations semi-développées possibles et les nommer.
- 3.La solution aqueuse du composé conduit le courant électrique et jaunit le bleu de bromothymol (BBT). Identifier le composé A.
- 4.Le composé A se transforme se transforme en présence du pentachlorure de phosphore en un composé B.
- 4.1.A quelle famille appartient B?
- 4.2. Préciser le groupe fonctionnel.
- 4.3. Donner la formule semi-développée et le nom de B.
- 5.On fait réagit B sur un alcool (R-OH)
- 5.1. Ecrire l'équation-bilan et donner les caractéristiques de cette réaction.
- 5.2. La densité de la vapeur par rapport à l'air de l'ester formé est d=3,51.
- 5.2.1. Quelles sont les formules semi-développées de l'ester et de l'alcool ?
- 5.2.2. Donner leur nom et préciser la classe de l'alcool.

On donne: $M_C=12g/mol$; $M_H=1g/mol$; $M_O=16g/mol$.

EQUILIBRE IONIQUE

Exercice 1

Soit le système inversible suivant, à l'équilibre dans une enceinte fermée :

 $2 SO_2(g) + O_2(g) \leftrightarrow 2 SO_3(g)$.

Cette réaction est exothermique dans le sens direct.

Dites d'abord dans quel sens se déplacera l'équilibre de la réaction, et ensuite comment évoluera la concentration en SO₃ ([SO₃]), dans les cas suivants:

- a) si on augmente la concentration en SO₂?
- b) si on diminue la concentration en O₂?
- c) si on diminue la pression totale?
- d) si on fournit de la chaleur au système

Exercice 2

Le pentachlorure d'antimoine se décompose comme suit :

$$SbCl_5(g) \leftrightarrow SbCl_3(g) + Cl_2(g)$$

Supposons que les concentrations initiales soient $[SbCl_5]_0 = 0,165 \text{ M}$; $[SbCl_3]_0 = 0,0955 \text{ M}$ et $[Cl_2]_0 = 0,210 \text{ M}$.

Sachant qu'on a déterminé, qu'à l'équilibre, $[SbCl_5] = 0.135$ M, calculer les valeurs à l'équilibre de $[SbCl_3]$ et de $[Cl_2]$. Calculer la constante d'équilibre K.

Exercice 3

Prenons l'équilibre suivant : $H_2(g) + I_2(g) \leftrightarrow 2 HI(g)$.

A 448°C, on introduit une demi mole de H₂ et 0,5 moles de I₂ dans un récipient de 10 litres.

A l'équilibre, il y a 0,11 moles de H₂, 0,11 moles de I₂ et 0,78 moles d'acide.

- a) Quelle est l'expression de K_e?
- b) Quelle est la valeur de K_e?
- c) Quelles seraient toutes les concentrations à l'équilibre, si on démarre la réaction avec 3 moles de diiode et une demi mole de dihydrogène ?

Exercice 4

1) Les valeurs des pKa des couples acide/base suivantes sont à 25°C :

 HNO_2/NO_2 pKa= 3,30 HF/F pKa= 3,17 Quel est l'acide le plus fort ?

2) Les valeurs des pKa des couples acide/base suivantes sont à 25°C:

 NH_4^+/NH_3 pKa= 9,20 $CH_3NH_3^+/CH_3NH_2$ pKa= 10,7

Quel est la base la plus forte ?

Exercice 5

On dispose d'une solution d'acide éthanoïque (CH₃COOH) dont le pH est égal à 3,15. Le pKa de cet acide est de 4,75 à 25°C.

- 1. Donner les concentrations, exprimées en mol.L⁻¹ de chacune des espèces dissoutes.
- 2. Calculer la concentration C_0 de cet acide.
- 3. Quel est son coefficient de dissociation α ?

Exercice 6

On considère une solution d'acide fluorhydrique (HF) de 0,1 mol/L dans laquelle cet acide est dissocié à 8 %.

- 1) Calculer à l'équilibre, les concentrations des espèces HF, F- et H₃O+.
- 2) Déterminer le pH de la solution considérée ainsi que la constante d'acidité Ka de HF.

Exercice 7

Une solution aqueuse d'acide méthanoïque de concentration $C = 0.05 \text{ mol.}1^{-1}$ à un pH égal à 2,5.

- 1. L'acide méthanoïque est-il un acide fort ou un acide faible ? Justifier votre réponse.
- 2. Ecrire l'équation bilan de la réaction entre l'acide méthanoïque et l'eau.
- 3. Faire le bilan qualitatif des espèces présentes en solution.
- 4. Calculer les concentrations de toutes les espèces présentes en solution.
- 5. En déduire le degré d'ionisation de l'acide méthanoïque dans l'eau.

Exercice 8

On obtient une solution S en mélangeant :

- 100 ml de potasse (KOH) de concentration C1 = 0,16 mol.l⁻¹.
- 200 ml de solution de soude de pH = 12.0;
- 200 ml d'eau.
- 1. Ecrire les équations bilans de dissolution des deux (02) bases fortes dans l'eau.
- 2. Calculer la concentration des ion OH dans S. En déduire le pH de S.
- 3. Calculer les concentrations des autres espèces chimiques présentes dans S.

Exercice 9

On soumet 5 ml de potasse de concentration C_b inconnue à l'addition progressive d'une solution d'acide bromhydrique à 0,025 mol.l⁻¹.

On mesure le pH en fonction du volume V_a (ml) d'acide versé. Les résultats des mesures sont consignés dans le tableau suivant.

V_a	0	2	4	6	8	10	12	14	14,5
pН	12	11,9	11,8	11,6	11,6	11,5	11,2	10,7	10,4

V_a	15,5	16	18	20	28
pН	3,6	3,3	2,9	2,6	2,3

- 1. Ecrire l'équation bilan de la réaction acido-basique se déroulant dans le bécher.
- 2. Tracer le graphe $pH = f(V_a)$.
- 3. Déterminer les coordonnées du point d'équivalence E et justifier la valeur du pH obtenu à l'équivalence.
- 4. Calculer la concentration molaire de la solution de potasse.
- 5. Calculer les concentrations molaires des espèces chimiques présentes dans le bécher lorsqu'on ajoute les volumes suivants de solution d'acide bromhydrique : $V_a = 4$ ml ; $V_a = 8,5$ ml ; $V_a = 18,5$ ml.
- 6. Vers quelle valeur tendrait le pH, si on continuait à ajouter la solution d'acide au-delà de $V_a = 28$ ml.