EXERCICE 1

- 1- Donnez la définition, les buts d'un dénombrement en microbiologie.
- 2- Donnez le principe des différents types de dénombrement.
- 3- Quelle différence faites-vous entre ces différents types de dénombrement ?
- 4- Définissez un échantillon pour analyse.
- 5- Quels sont les différents modes de prélèvement des échantillons ?
- 6- Donnez la définition d'un liquide de dilution. Citez 3 exemples.
- 7- a- Quelles sont les techniques de dénombrement des microorganismes en milieu liquide ?
 - b- Quelles différences faites-vous entre ces techniques ?
 - c- Par quoi se caractérise la présence des microorganismes dans ces techniques ?
- 8- Quels sont les modes de prélèvement d'un échantillon?

EXERCICE 2

Un technicien utilise diverse méthodes pour le dénombrement des germes aérobies mésophile dans un échantillon de dèguè vendu sur le marché. Pour cela, il réalise des dilutions décimales jusqu'à 10⁻⁵ et inocule 1ml de chaque dilution par tube et par boîte de Pétri. Après incubation, à 37°C, les résultats obtenus sont présentés dans le tableau suivant.

Dilutions	10 ^O		10 -1		10 -2		10 -3		10 -4		10 -5	
Résultats 1	+		+		+		+		-		-	
Résultats 2	+++		+++		- + -		+-+		-+-			
Résultats 3	Inc.	Inc.	Inc.	Inc.	167	143	17	20	01	04	00	00

Inc = Incomptable

- 1- Quelles sont les méthodes de dénombrement utilisées par ce technicien ?
- 2- Calculez le nombre de germes dans chaque cas.
- 3-Calculez la masse de dèguè utilisée pour la préparation de la suspension mère si le technicien a utilisé 225 cm³ d'eau physiologique.
- 4- Réalisez les schémas des protocoles des résultats 1 et 2.

NB: La table de Mac Grady est autorisée.

EXERCICE 3

On fait pousser, sans phase de latence, 4.10^5 bactéries dans un milieu tel qu'après 6 heures d'incubation, la population totale atteigne $3,68.10^7$ cellules bactériennes. Calculez le temps de génération (Tg) de cette bactérie.

EXERCICE 4

On prélève 4.10⁶ cellules d'*E. coli* en phase exponentielle de croissance sur un milieu peptoné, que l'on incube dans 25 ml d'un milieu identique au précédent à 37°C. La phase stationnaire, correspondant à 3.10⁹ cellules / ml, est atteinte après 284 mn.

Calculez le taux de croissance horaire (R) et déduisez le temps de génération (Tg) d'*E.coli* dans le milieu peptonée.

EXERCICE 5

On réalise une expérience de croissance bactérienne avec une souche d'*E.coli* à 37°C, à partir d'une culture âgée de 24 heures. La mesure de nombre de bactéries(N) à intervalles réguliers d'une heure a donné les résultats qui sont consignés dans le tableau ci-dessous.

Temps (h)	0	1	2	3	4	5	6	7
Ln N	2	2	2	2,2	2,8	3,5	4,4	5,3
Temps(h) suite	8	9	10	11	12	13	14	15
Ln N (suite)	6,1	6,9	7	7	7	6,9	6,5	5,7

- 1-Tracez la courbe de croissance $Ln\ N=f(t)$. Echelle : 1 cm pour 1 unité de $Ln\ N$ et 1 cm pour 1 heure.
- 2- Identifiez les principales phases de la courbe et donnez la signification physiologique de chacune d'elles.
- 3- Déterminez graphiquement le taux népérien de croissance μ. Déduisez le taux de croissance (R) et le temps de génération (Tg).