Chapitre 8

SUITES NUMÉRIQUES

Objectif pédagogique principal:

• Mettre en place le raisonnement par récurrence et étudier le comportement global d'une suite.

Leçon 1: LE RAISONNEMENT PAR RÉCURRENCE

Objectif pédagogique:

• Utiliser le raisonnement par récurrence pour démontrer une propriété.

Soit la suite (u_n) définie par $u_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n + 1$.

On souhaite obtenir une formule permettant de calculer explicitement u_n en fonction de n. Le calcul des premiers termes donne :

$$u_1 = 2u_0 + 1 = 1$$

$$u_2 = 2u_1 + 1 = 2 \times 1 + 1 = 3$$

$$u_3 = 2u_2 + 1 = 2 \times 3 + 1 = 7$$

$$u_4 = 2u_3 + 1 = 2 \times 7 + 1 = 15$$

$$u_5 = 2u_4 + 1 = 2 \times 15 + 1 = 31$$

La suite (u_n) semble obéir à une loi toute simple : On obtient les puissances successives de 2 otées de 1.

Nous pouvons donc émettre la **conjecture** suivante : $\forall n \in \mathbb{N}$, $u_n = 2^n - 1$.

Cette conjecture **n'est pas une preuve** ni une affirmation nécessairement vraie. Ce n'est que l'énoncé d'une propriété résultant d'un certain nombre d'observations.

Nous allons, par une démonstration, chercher à confirmer ou non cette conjecture.

Notons (*P*) la propriété, définie par : $\forall n \in \mathbb{N}$, $u_n = 2^n - 1$.

- On a vérifié que la propriété (*P*) était vraie au rang 0, 1, 2, 3, 4, 5. On dit que la propriété (*P*) est **initialisée**.
- Supposons un instant, que pour un certain entier p, on ait effectivement la propriété : $u_p = 2^p 1$.

Alors, on aurait : $u_{p+1} = 2u_p + 1 = 2 \times (2^p - 1) + 1 = 2 \times 2^p - 2 + 1 = 2^{p+1} - 1$. Ce qui correspond à la propriété (P) à l'odre p + 1.

Autrement dit, si la propriété est vraie à un certain rang p alors elle l'est également au rang suivant p + 1.

On dit que la propriété (P) est **héréditaire**.

Conclusion:

On a vérifié que la propriété (P) est vraie au rang 0, 1, 2, 3, 4, 5. Mais comme elle est héréditaire, elle sera vraie encore au rang n = 6, puis au rang n = 7 etc. Si bien que notre propriété est **finalement vraie à tout rang** n.

L'axiome de récurrence 1.1)

, ropriété

Soit une propriété (P_n) définie sur \mathbb{N} et soit $n_0 \in \mathbb{N}$.

- Si la propriété est **initialisée** à partir du rang n_0 ,
- et si la propriété est **héréditaire** à partir du rang n_0 ; Alors la propriété est vraie à partir du rang n_0 .

À retenir :

Le raisonnement par récurrence comporte deux phases :

- Prouver que la propriété est initialisée.
- Prouver que la propriété est héréditaire.

Applications 1.2)

Application 1:

Démontrer l'**inégalité de BERNOULLI** suivante : Soit un réel a strictement positif, on a $\forall n \in \mathbb{N}, \qquad (1+a)^n \ge 1 + na.$ Application 2:

La suite (v_n) est définie par : $v_0 = 1$ et $v_{n+1} = \sqrt{2 + v_n}$.

1. Démontrer que pour tout naturel n, $0 < v_n < 2$.

2. Démontrer que la suite est strictement cro	sissante.
pplication 3:	
$n \in \mathbb{N}^*$, $\forall x \in [0; +\infty[$, on pose: $I_n = \int_0^x t^n e^{-t}$	^t dt.
1. Démontrer que $\forall n \in \mathbb{N}^*$, la fonction I_n est	

2. À l'aide d'une intégration par parties : a) Calculer $I_1(x)$ pour tout x élément de $[0;$	$+\infty[.$
	I
b) Démontrer que : $\forall n \in \mathbb{N}^*, \forall x \in [0; +\infty]$	$I_{n+1}(x) = (n+1)I_n(x) - x^{n+1}e^{-x}.$
	1
3. À l'aide d'un raisonnement par récurrence	
$\forall n \in \mathbb{N}^*, \forall x \in [0; +\infty[, I_n(x) =$	$n! \left[1 - e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right) \right].$
4 D'	
4. Démontrer que : $\lim_{x \to +\infty} I_n(x) = n!$.	
I	

Leçon 2: CONVERGENCE DE SUITES NUMÉRIQUES

Objectif pédagogique :

- Démontrer qu'une suite est majorée ou minorée.
- Démontrer qu'une suite est monotone.
- Démontrer qu'une suite est convergente.

2.1) Définition

Une suite numérique étant un cas particulier de fonction numérique, la notion de **limite** existe aussi pour les suites. Plus précisement de **limite en** $+\infty$, puisque $n \in \mathbb{N}$. L'étude de la limite d'une suite est donc la même que la limite en $+\infty$ d'une fonction.

$\mathcal{D}_{\acute{e}finition}$

Soit (u_n) Une suite numérique.

On dit que la suite (u_n) est **convergente** si $\lim_{n\to+\infty} u_n$ **existe et est finie**.

Dans le cas contraire, on dit que la suite est divergente.

Application: Étudier la convergence des suites suivantes :

$u_n = \frac{\sqrt{n-2}}{n+2} n \ge 0$	$v_n = n\cos n n \ge 0$

2.2) Limite de suites par comparaison

$\mathcal{P}_{ropriété}$

Soit (u_n) , (v_n) et (w_n) trois suites numériques et $n_0 \in \mathbb{N}$ et $l \in \mathbb{R}$.

• Théorème des gendarmes :

Si
$$\forall n \ge n_0$$
, $v_n \le u_n \le w_n$ et si $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l$ alors $\lim_{n \to +\infty} u_n = l$

• Théorème de comparaison :

Si
$$\forall n \ge n_0$$
, $v_n \le u_n$ et si $\lim_{n \to +\infty} v_n = +\infty$ alors $\lim_{n \to +\infty} u_n = +\infty$

Si
$$\forall n \ge n_0$$
 , $u_n \le w_n$ et si $\lim_{x \to +\infty} w_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$

Application 1 :

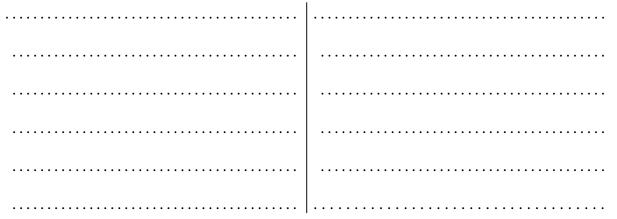
Étudier la limite des suites suivantes :

$u_n = \frac{\cos(2n)}{\sqrt{n}} n \ge 0$	$v_n = n + 1 - \cos n n \ge 0$

Application 1:

La suite (u_n) est définie, pour $n \ge 1$, par : $u_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n}$.

1. Calculer u_1 , u_2 et u_3 .



2. Démontrer que pour $n \ge 1$: $\frac{n^2}{n^2 + 1} \le u_n \le \frac{n^2}{n^2 + 1}$.

			_			_			
2	En	déduire	la cont	TORGONCO	o+ la	limita	ما ما	cuito	(11)
J.	$\mathbf{L}\mathbf{H}$	aeaune	ia com	ergence	etia	IIIIIII	ue 1a	Sune	$(u_n).$

•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
	•						•	•	•					•						•															•				•					•										•	•		•			•				•			•									•
												•			•																																											•			•															
•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	_											_	_	_	_	_	_	_	_						_			_	_	_	_	_	_	_	_		1				_					_			_		_			_									_	_	_	_		_								

2.3) Limite d'une suite géométrique

$\mathcal{P}_{ropriété}$

Soit q un nombre réel, on a :

- Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$.
- Si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$
- Si $q \le -1$ alors $\lim_{n \to +\infty} q^n$ n'existe pas.

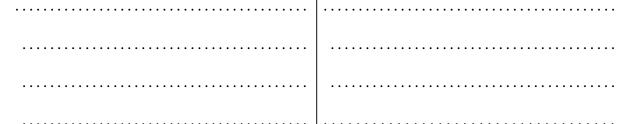
Application: Soit la suite (u_n) définie paer : $u_1 = \frac{3}{2}$ et $u_{n+1} = \frac{1 + nu_n}{2(n+1)}$, $n \ge 1$.

On définit une suite auxiliaire (v_n) par $v_n = nu_n - 1$, $n \ge 1$.

1. Montrer que la suite (v_n) est géométrique ; préciser sa raison et son premier terme.

•	• •	•	•	•	• •	•	• •	•	• •	•	• •	• •	•	• •	•	•	•	•	• •	•	• •	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	• •	• •	•	• •	•	• •	• •	•	• •	•
•		•	•	•		•		•		•					•	•		•		•			•		•		•	•	•		•		•		•		•		•	•		•		•			•		•			•		•
			•			•		•		•						•		•		•			•						•		•		•				•		•	•				•			•	٠.				•		
			•			•		•		•						•		•		•			•				•						•						•					•										
						•				•						•											•	•	•		•									•							•		•			•		

2. En déduire la limite de la suite (u_n) .



2.4) Convergence d'une suite monotone

 $\mathcal{D}_{\acute{e}finition}$

Soit (u_n) une suite numérique, m et M deux nombres réels.

- On dit que la suite (u_n) est **minorée** par m si : $\forall n \in \mathbb{N}$, $m \le u_n$.
- On dit que la suite (u_n) est **majorée** par M si : $\forall n \in \mathbb{N}$, $u_n \leq M$.

Une suite bornée est une suite à la fois minorée et majorée.

Application:

Démontrer que la suite définie par : $u_n = \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n}, \quad n \ge 1$, est bornée.

Propriété •

- Si une suite est croissante et non majorée alors la suite diverge vers $+\infty$.
- Si une suite est décroissante et non minorée alors la suite diverge vers $-\infty$.
- Si une suite est croissante et majorée alors la suite converge.
- Si une suite est décroissante et minorée alors la suite converge.

Application 1 :

Soit la suite (u_n) définie paer : $u_0 = 0$ et $u_{n+1} = \sqrt{3u_n + 4}$, $n \ge 0$.

1. Montrer que la suite (u_n) est croissante.

2. Montrer que la suite (u_n) est majorée par 4 p	ouis conclure.
Application 2:	
Soit la suite (v_n) définie paer : $v_0 = \frac{\pi}{2}$ et $v_n = \int_0^{\frac{\pi}{2}}$ si 1. Montrer que la suite (v_n) est décroissante.	$n^n t dt$, $n \ge 1$.
2. Montrer que la suite (v_n) est positive.	
3. En déduire la convergence de la suite (v_n) .	