CHIP

PROBABILITÉ CONDITIONNELLE ET VARIABLE ALÉATOIRE

1. Probabilité conditionnelle

Définition

Definition

Soit Ω l'univers des éventualités d'une expérience aléatoire.

B un évènement de Ω de probabilité non nulle.

L'application P_B qui à tout évènement A de Ω associe le nombre réel $\frac{P(A \cap B)}{P(B)}$ est une probabilité sur Ω .

 $P_B(A)$ est appelée probabilité conditionnelle de A sachant que B est réalisé ou plus simplement la probabilité de A sachant B.

On la note aussi P(A/B).

Conséquences:

 Λ et B sont des évènements de Ω de probabilités non nulles. On a :

$$P_{B}(A) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P_B(A) \times P(B).$$

•
$$_{A}P_{A}(B) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P_A(B) \times P(A).$$

Évènements indépendants

Soit P une probabilité définie sur un univers Ω .

Deux évènements A et B de Ω sont indépendants lorsque la réalisation de l'un n'influence pas la réalisation de l'autre, c'est-à-dire $P_B(A) = P(A)$ et $P_A(B) = P(B)$.

Conséquence:

Deux évènements A et B de Ω sont indépendants lorsque $P(A \cap B) = P(A) \times P(B)$.

Remarque:

Dans la pratique, c'est cette conséquence qu'on utilise pour démontrer que deux évènements sont indépendants.

Probléde

A et B sont des évènements d'un univers Ω de probabilités non nulles.

- Si A et B sont indépendants, alors A et B (resp A et B) sont indépendants.
- Si A et B sont indépendants, alors A et B sont indépendants.

. Arbre de probabilité

Silvammiton

Un arbre de probabilité (ou arbre pondéré) est un schéma permettant de résumer une expérience aléatoire connaissant des probabilités conditionnelles.

En voici une présentation:

Exemple:

Un magasin propose des réductions sur les trois marques d'ordinateurs qu'il distribue. La marque A représente 64 % des ordinateurs vendus ; la marque N, 28 % ; la marque O en représente 8 %. 30 % des ordinateurs de la marque A, 60 % de la marque N et 80 % de ceux de la marque O sont soldés.

Joic While Exm

On interroge au hasard un client ayant acheté un ordinateur de ce magasin.

- 1. Construis un arbre de probabilité décrivant la situation.
- 2. Détermine la probabilité qu'il ait acheté un ordinateur de la marque A et soldé.
- 3. Détermine la probabilité qu'il ait acheté un ordinateur de la marque O et non soldé.

Réponse:

- 1. Considérons les évènements suivants.
- A: « L'ordinateur est de la marque

 $A \gg ;$

N: « L'ordinateur est de la marque

N»;

O: « L'ordinateur est de la marque

O » :

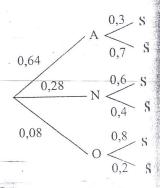
S: « L'ordinateur est soldé ».

2. La probabilité qu'il ait acheté un ordinateur de la marque A et soldé est :

 $P(A \cap S) = 0.64 \times 0.3 = 0.192.$

3. La probabilité qu'il ait acheté un ordinateur de la marque O et non soldé est :

 $P(O \cap \overline{S}) = 0.08 \times 0.2 = 0.16.$



Formule des probabilités totales

Soient $A_1, A_2, ..., A_n$ des évènements de Ω deux à deux incompatibles et dont la réunion donne Ω .

Pour tout évènement B de Ω , on a : $P(B) = P(B \cap A_1) + P(B \cap A_2) + ... + P(B \cap A_n)$.

2. Variable aléatoire

. Définition

 Ω est l'univers des éventualités d'une expérience aléatoire. On appelle variable aléatoire X sur Ω toute application de Ω vers \mathbb{R} .

Notation et vocabulaire

- L'ensemble des valeurs prises par X se note $X(\Omega)$.
- $(X = x_i)$ désigne l'évènement « X prend la valeur x_i ».
- $(X \le a)$ désigne l'évènement « X prend une valeur strictement inférieur à a ».

. Loi de probabilité d'une variable aléatoire

X est une variable aléatoire définie sur l'univers Ω d'une expérience aléatoire. On appelle loi de probabilité de X (ou distribution de X), l'application qui à chaque valeur x_i prise par X associe la probabilité de l'évènement $(X = x_i)$.

La loi de probabilité d'une variable aléatoire X peut être présentée par un tableau :

x_i	x_1	x_2	•••	X_n
$P(X = x_i)$	p_1	p_2	•••	p_n

On a:
$$p_1 + p_2 + ... + p_n = 1$$
.

Fonction de répartition d'une variable aléatoire

X est une variable aléatoire définie sur l'univers Ω d'une expérience aléatoire. $\{x_1; x_2; \ldots; x_n\}$, l'ensemble des valeurs prises par X.

On appelle fonction de répartition de X, l'application F de \mathbb{R} vers [0;1] définie par : $F(x) = P(X \le x)$.

On a:
$$\begin{cases} \text{Pour } x < x_1, & \text{F}(x) = 0 \\ \text{Pour } x_1 \le x < x_{i+1}, & \text{F}(x) = \text{F}(x_{i-1}) + \text{P}(X = x_i) \\ \text{Pour } x_n \le x, & \text{F}(x) = 1 \end{cases}$$

Espérance mathématique

Soit X une variable aléatoire prenant les valeurs $x_1; x_2; \ldots; x_n$, avec les probabilités respectives $p_1; p_2; \ldots; p_n$.

On appelle espérance mathématique de X, le nombre réel noté E(X) défini par : $E(X) = x_1 p_1 + x_2 p_2 + ... + x_n p_n$.

Variance

Soit X une variable aléatoire prenant les valeurs $x_1; x_2; \ldots; x_n$, avec les probabilités respectives $p_1; p_2; \ldots; p_n$ et E(X) l'espérance mathématique de X.

On appelle variance de X, le nombre réel positif noté V(X) défini par :

$$V(X) = p_1 (x_1 - E(X))^2 + p_2 (x_2 - E(X))^2 + \dots + p_n (x_n - E(X))^2.$$

Autre expression de la variance

$$V(X) = E(X^2) - [E(X)]^2 = (p_1 x_1^2 + p_2 x_2^2 + ... + p_n x_n^2) - [E(X)]^2.$$

. Écart type

Soit X une variable aléatoire de variance V(X).

On appelle écart type de X, le nombre réel positif noté $\sigma(X)$ défini par : $\sigma(X) = \sqrt{V(X)}$.

3. Loi binomiale

Épreuve de Bernoulli

e Pélminai

On appelle épreuve de Bernoulli, toute expérience aléatoire ne conduisant qu'à deux éventualités.

L'une est appelée « succès » et l'autre « échec ».

. Schéma de Bernoulli

g Pality But

On appelle schéma de Bernoulli une suite de *n* épreuves de Bernoulli identiques et indépendantes.

Le nombre n d'épreuves et la probabilité p du succès sont appelés paramètres du schéma de Bernoulli.

. Loi binomiale

e definition

Soit E un schéma de Bernoulli à n épreuves.

Pour une épreuve, on note p la probabilité du succès et q (q = 1-p) celle de l'échec. Soit X la variable aléatoire qui à chaque éventualité de E associe le nombre k de succès $(0 \le k \le n)$. On a :

L'ensemble des valeurs prises par X est : $\{0; 1; ...; n\}$.

La probabilité d'obtenir exactement k succès au cours des n épreuves est :

$$P(X = k) = C_n^k \times p^k \times q^{n-k}.$$

La loi de probabilité de X est appelée loi binomiale de paramètres n et p. On la note B(n; p).

Soit X une variable aléatoire dont la loi de probabilité est la loi binomiale de paramètres n et p.

On a :
$*$
 $E(X) = np$.

$$V(X) = np(1-p).$$