Chapitre 7 ÉQUATIONS DIFFÉRENTIELLES

Objectif pédagogique principal:

• Découvrir une nouvelle notion utile pour d'autres disciplines comme l'économie, les sciences physiques, la géographie etc.

Leçon 1: <u>GÉNÉRALITÉS SUR LES</u> ÉQUATIONS DIFFÉRENTIELLES

Objectif pédagogique :

• Résoudre une équation différentielle de premier ordre ou de second ordre à coefficient constant.

1.1) Définition

Activité :

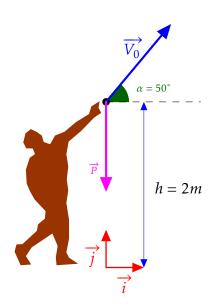
RANDY BARNES est le recordman mondial du lancer de poids.

Son lancer, effectué en 1990,

est schématiser ci-dessous :

- $\overrightarrow{V_0}$ est la vitesse initiale du poids au lancer : $V_0 = 14,64 \text{ ms}^{-1}$,
- *h* est la hauteur à laquelle le poids est lancé;
- P est le vecteur poids de la boule lancée :
- La masse de la boule est de 7 260 g.

L'objectif de cette activité est de déterminer la longueur du lancer de BARNES.



Assimilons la boule à un objet ponctuel $M\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ de masse m. x(t) et y(t) donnant la position du point M en fonction du temps t.

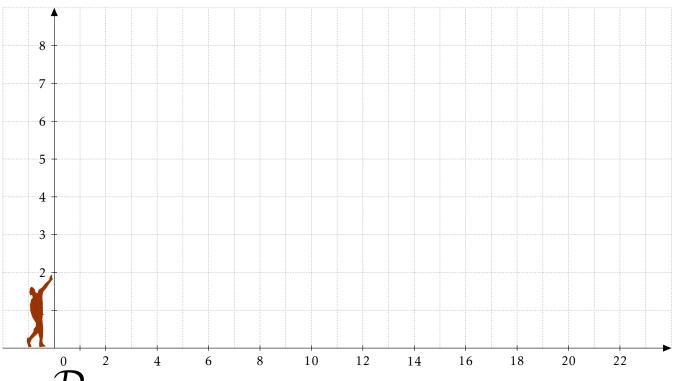
En appliquant le principe fondamental de la dynamique à ce point, on obtient (On néglige les frottement dus à l'action de l'aire sur la boule) :

$$m\overrightarrow{a} = \overrightarrow{P}$$
 ; $\overrightarrow{a} \begin{pmatrix} x''(t) \\ y''(t) \end{pmatrix}$ étant le vecteur accélération du point M .

On obtient alors les équations suivantes :		
Ces équations sont		
La résolution de ces équations nous donne :		
	•••••	
Exprimons maintenant y en fonction x por		

ÉQUATIONS DIFFÉRENTIELLES

Représentons ci-dessous la trajectoire de la boule lancée par Barnes.



 $\mathcal{D}_{\acute{e}finition}$

Une **équation différentielle** est une équation dont l'**inconnue est une fonction** y et dans laquelle apparaissent une ou plusieurs **dérivées de cette fonction**.

L'**ordre** d'une équation différentielle est celui de la dérivée d'ordre le plus élevé apparaissant dans l'équation.

Résoudre une équation différentielle, c'est déterminer toutes les fonctions qui vérifient cette équation.

1.2) Équations différentielles du premier ordre à coefficients constants

$\mathcal{D}_{cute{efinition}}$

Soit a; b des nombres réels tels que $a \ne 0$ et ϕ une fonction continue.

L'équation (E): $ay' + by = \phi(x)$ est dite équation différentielle du **premier ordre** car elle ne fait qu'intervenir la fonction inconnue y et sa dérivée première y'.

(*E*) est dite àcoefficients constants car *a*, *b* sont constants.

Propriété

• L'ensemble des solutions sur \mathbb{R} de l'équation y' = ay est l'ensemble des fonctions f_k définies par :

$$\forall x \in \mathbb{R}, \quad f_k(x) = ke^{ax}, \qquad k \in \mathbb{R}.$$

• L'ensemble des solutions sur \mathbb{R} de l'équation y' = ay + b $a \neq 0$, $b \neq 0$ est l'ensemble des fonctions f_k définies par :

$$\forall x \in \mathbb{R}, \quad f_k(x) = ke^{ax} - \frac{b}{a} \qquad k \in \mathbb{R}.$$

Application 1 :

Résoudre dans R léquation différentielle (E): 2y' + 3y = 0.
ication 2:	
Résoudre dans \mathbb{R} léquation différentielle (E_2): $y' = -2y + 5$.
Déterminer la solution g de l'équation (E_2) telle que $g(0) = 2$.
	Déterminer la solution f de l'équation (E) ication 2: Résoudre dans $\mathbb R$ léquation différentielle (E)

Application 3:

Considérons l'équation différentielle (1) $y' + 2y = (2x + 1)e^{-2x}$.

1. Résoudre dans \mathbb{R} léquation différentielle (2	2): $y' + 2y = 0$.
2. Soit <i>a</i> et <i>b</i> deux nombres réels et soit <i>u</i> la fo a) Déterminer <i>a</i> et <i>b</i> pour que la fonction <i>u</i>	
b) Démontrer qu'une fonction v est solution de (2) .	on de (1) si et seulement $v - u$ est solution
c) En déduire l'ensemble des solutions de	(1).
	
3. Déterminer la solution de l'équation (1) qu	ui s´annule en 0.

1.3) Équations différentielles du 2nd ordre à coefficients constants

$\mathcal{D}_{\acute{e}finition}$

Soit a; b et c des nombres réels tels que $a \ne 0$ et ϕ une fonction continue. L'équation (E): $ay'' + by' + cy = \phi(x)$ est dite équation différentielle du **second ordre**. (E) est dite àcoefficients constants car a, b et c sont constants.

$\mathcal{P}_{ropriété}$

Soit (E_h) ay'' + by' + cy = 0 une équation différentielle du second ordre sans second membre et soit $\Delta = b^2 - 4ac$ son discriminant :

• Si $\Delta > 0$ Posons $r_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$ alors la solution générale de l'équation (E_h) est définie par :

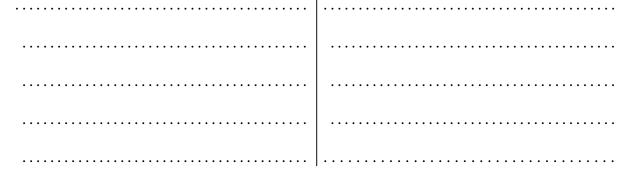
$$\forall x \in \mathbb{R} \quad y_h(x) = Ae^{r_1x} + Be^{r_2x} \qquad A \in \mathbb{R}, B \in \mathbb{R}.$$

- Si $\Delta = 0$ Posons $r = -\frac{b}{2a}$ alors la solution générale de l'équation (E_h) est définie par : $\forall x \in \mathbb{R}$ $y_h(x) = (AX + B)e^{rx}$ $A \in \mathbb{R}$, $B \in \mathbb{R}$.
- Si $\Delta < 0$ Posons $r = -\frac{-b}{2a}$ et $\omega = \left| \frac{\sqrt{-\Delta}}{2a} \right|$ alors la solution générale de l'équation (E_h) est définie par :

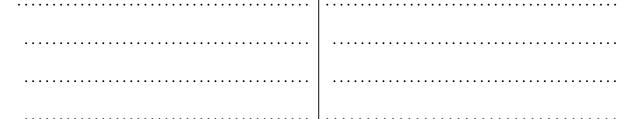
$$\forall x \in \mathbb{R}$$
 $y_h(x) = (A\cos\omega x + B\sin\omega x)e^{rx}$ $A \in \mathbb{R}, B \in \mathbb{R}.$

Application 1 :

1. Résoudre dans \mathbb{R} léquation différentielle (*E*): $y'' + \frac{\pi^2}{9}y = 0$.



2. Déterminer la solution f de l'équation (E) telle que f(0) = 1 et f(1) = 5.



Application 2:

ripplication 2.	
1. Résoudre dans $\mathbb R$ léquation différentielle (E	
2. Déterminer la solution <i>h</i> de l'équation (<i>E</i>) t	1
Application 3:	
Considérons l'équation différentielle (1) y"-	$2y = 4x^2e^{x^2}.$
1. Résoudre dans R léquation différentielle (2	•
2. Soit a et b deux nombres réels et soit h la foa) Déterminer a et b pour que la fonction h	enction définie sur \mathbb{R} par $h(x) = (ax + b)e^{x^2}$, soit une solution de l'équation (1).

b) Démontrer qu'une fonction <i>g</i> est soluti de (2).	ion de (1) si et seulement $g - h$ est solution
c) En déduire l'ensemble des solutions de	` '
3. Déterminer la solution de l'équation (1) q	ui s´annule en 1.

CHAPITRE 7. ÉQUATIONS DIFFÉRENTIELLES